
f ′(a) = limh→0 h

f (a+h)−f (a)

In words, explain why this expression gives the rate of change of the function f (x) at the
point x = a

Chapter 3 - Derivatives

Section 3.1: The derivative at a point
The derivative of a function f (x) at a point x = a is equal to the rate of change in f (x) at that
point, or equivalently the slope of the line tangent to the function at the point x = a.

On page 160 of S&D, the derivative of a function f (x) at the point x = a is defined to be equal to

2Let's use sympy to confirm that the derivative of the function f (x) = x − 8x + 9 at the point
x = a is 2a − 8 as shown in Example 4 on page 161 of S&D.

In [1]: import sympy as sp

In [3]: f=sp.Function('f')

In [4]: a,h,x=sp.symbols('a,h,x')

In [4]: def f(x):

return x**2-8*x+9

In [5]: sp.limit((f(a+h)-f(a))/h,h,0)

Out[5]: 2*a - 8

Note in this example, that we defined "f" to be a function data type and then later gave the
functional definition for f . Furthermore, before giving the functional definition for , we also f
defined "x" to be a symbol data type.

With these definitions, if we typed f (x) into Python, we would get the following result.

In [26]: f(x)

Out[26]: x**2 - 8*x + 9

Defining f (x) in this way also helped when calculating the limit of the function at the point x = a.
We could essentially type into Python directly the limit-based definition of the derivative.

An alternative way to evaluate the limit for this function at the point x = a would be

In [28]: sp.limit(((a+h)**2-8*(a+h)+9-(a**2-8*a+9))/h,h,0)

Out[28]: 2*a - 8

But encoding the function and limit this way is prone to errors and looks un-necessarily
complicated.

Let's now evaluate the derivative at the point a = 3 , as done in Example 5, p. 161 of S&D. One
approach to doing this is to use the substitution operation in sympy
(http://docs.sympy.org/latest/tutorial/basic_operations.html
(http://docs.sympy.org/latest/tutorial/basic_operations.html)).

In [6]: sp.limit((f(a+h)-f(a))/h,h,0).subs(a,3)

Out[6]: -2

Note how we did this, sp.limit((f(a+h)-f(a))/h,h,0) is a operation that returns 2 ∗ a − 8, and this is
further operated on by substituting "3" for a.

An alternative approach is to directly substitute "3" for a in the code sp.limit((f(a+h)-f(a))/h,h,0),
such as

In [7]: sp.limit((f(3+h)-f(3))/h,h,0)

Out[7]: -2

This is an okay approach, but prone to errors because you need to find each instance of a and
then substitute. For the current expression, this is not a problem, but for more complicated
expressions, it may be a problem.

Estimating derivatives from empirical data
There are fairly sophisticated methods to estimate the derivative of an empirical function. For
example, the data in problem #33 on p. 166-7 of S&D can be thought of as an empirical function.
S&D provide a simple approach on pages 162 - 163.

Here, we will work through problem #33,and also plot the empirical function. In doing so, we will
extend our practical skills in either R or Python or both.

First, let's plot the empirical function.

R

http://docs.sympy.org/latest/tutorial/basic_operations.html

We can think of the times and blood-alcohol values as vectors of numbers. In R, a vector of
numbers [1, 1.5, 2.0, 2.5, 3.0] is entered as

In [11]: c(1,1.5,2,2.5,3)

1 1.5 2 2.5 3

Let's define the vector of numbers [1, 1.5, 2.0, 2.5, 3.0] to be equal to the variable "t" sense
these are times

In [12]: t=c(1,1.5,2,2.5,3)

Similarly, we will define the vector of blood alcohol concentrations to be equal to the variable "C"

In [13]: C=c(0.33,0.24,0.18,0.12,0.07)

Next, we'll plot the empirical function.

http:C=c(0.33,0.24,0.18,0.12,0.07

In [14]: plot(t,C,xlab='time (hours)',ylab='C(t) (mg/mL)')

The average rate of change of an empirical function over a time interval from t1 to t2 is

f ()−f () t2 t1 (S&D p. 162)
t2 −t1

The interval [1.0,2.0] corresponds to the first and third time points, so the average rate of change
is

In [15]: (C[3]-C[1])/(t[3]-t[1])

-0.15

(mg/mL) mg The units for the change are , or equivalently .
hr mLhr

Calculate the average rate of change for at least one other time interval and verify

For part b of problem #33, we can use the approach given in example 7 (page 166), whereby an
estimate of the derivative is the average of the rate of change to the left of the point and
the rate of change to the right of the point .

x = 2
x = 2

In [17]:

-0.12

1/2*((C[3]-C[2])/(t[3]-t[2])+(C[4]-C[3])/(t[4]-t[3]))

Why is it more accurate to take the average of the rate of change above and below the
point, as opposed to choosing to take as the derivate the rate either above or below the
point?

Scientific Python

Vectors of numbers are entered as shown below.

In [14]: t=[1.,1.5,2,2.5,3.]

In [15]: C=[0.33,0.24,0.18,0.12,0.07]

Plotting is the same as before, except we want to plot data points only and not lines between
points. To do so we add the option 'ko' to the plot command to indicate plotting "black" "points"
(see the tutorial https://matplotlib.org/users/pyplot_tutorial.html
(https://matplotlib.org/users/pyplot_tutorial.html)).

In [3]: import matplotlib.pyplot as plt

https://matplotlib.org/users/pyplot_tutorial.html

In [16]: plt.xlabel('time (hours)')
plt.ylabel('C(t) (mg/ML)')
plt.show(plt.plot(t,C,'ko'))

Note that indexing of vectors in Python starts at "0", as opposed to "1", so rates are calculated
as for part (a-i) and part (b):

In [35]: (C[3-1]-C[1-1])/(t[3-1]-t[1-1])

Out[35]: -0.15000000000000002

In [36]: 1/2*((C[3-1]-C[2-1])/(t[3-1]-t[2-1])+(C[4-1]-C[3-1])/(t[4-1]-t[3-1]))

Out[36]: -0.12

Section 3.2: Derivatives as functions and higher
derivatives
The textbook in Section 3.2 makes the technical connection between the derivative of a function
at a point, which is a scalar (number-valued) versus the derivative of a function across an
interval, which is function-valued. It then presents the technical basis of higher derivatives. For
example, the second derivative of a function is the derivative of the derivative of a function. This
is likely a review for you and we will now move toward using evaluating derivatives in R and
Scientific Python using the derivative function, as opposed to evaluating it as a limit.

Section 3.3 - 3.4: Basic Differentiation formulas
Using Scientific Python, it is not necessary to memorize or be able to derive various cases for the
derivatives of functions. In practice, theoretical biologists let a computer algebra system perform
the calculation.

For example, consider taking the derivative of the csc(x) function. One approach to evaluating
1the derivative is to recognize that csc(x) = , and then use the quotient rule to calculate thesin(x)

derivative. This approach requires remembering that the derivative of sin(x) is − cos(x) , or
being able to derive this equivalence.

Alternatively, we can use the derivative function in sympy to calculate the derivative
(http://docs.sympy.org/latest/tutorial/calculus.html
(http://docs.sympy.org/latest/tutorial/calculus.html)).

In [8]: sp.diff(sp.csc(x),x)

Out[8]: -cot(x)*csc(x)

Note that having imported sympy as "sp", the derivative operator is "sp.diff", with the function as
the first argument and the variable as the second argument. Note further, that I am assuming that
"x" has retained its status as a "symbol" in Scientific Python.

A lovely first-year calculus exam question might be

d dEvaluate the following expression (csc(x)) .
dx dx

I.e., the second derivative of the function csc(x).

Not a problem:

In [9]: sp.diff(sp.diff(sp.csc(x),x),x)

Out[9]: -(-cot(x)**2 - 1)*csc(x) + cot(x)**2*csc(x)

Or an alternate encoding of this second derivative is

In [10]: sp.diff(sp.csc(x),x,x)

Out[10]: (2*cot(x)**2 + 1)*csc(x)

Note we seemlingly get different answers, but let's simplify the output of
sp.diff(sp.diff(sp.csc(x),x),x), (http://docs.sympy.org/latest/tutorial/simplification.html
(http://docs.sympy.org/latest/tutorial/simplification.html)).

In [13]: sp.simplify(sp.diff(sp.diff(sp.csc(x),x),x))

Out[13]: (2*cot(x)**2 + 1)*csc(x)

If we had directly pasted the output -(-cot(x)*2 - 1)\csc(x) + cot(x)*2\csc(x) into the simplify
function, we would get an error because functions cot and csc need to have an "sp." before
them.

http://docs.sympy.org/latest/tutorial/calculus.html
http://docs.sympy.org/latest/tutorial/simplification.html

--

In [14]: sp.simplify(-(-cot(x)**2 - 1)*csc(x) + cot(x)**2*csc(x))

NameError Traceback (most recent call

last)

<ipython-input-14-13dea8103983> in <module>()

----> 1 sp.simplify(-(-cot(x)**2 - 1)*csc(x) + cot(x)**2*csc(x))

NameError: name 'cot' is not defined

In [15]: sp.simplify(-(-sp.cot(x)**2 - 1)*sp.csc(x) + sp.cot(x)**2*sp.csc(x))

Out[15]: (2*cot(x)**2 + 1)*csc(x)

What is an interpretation of the second derivative of a function?

On your own, try problem #55 on p. 201 of S&D.

Section 3.5: The chain rule
Although sympy can take care of the mechanics of calculating derivatives, it's important to have
a good conceptual understanding of what a derivative is, its various interpretations and how it
can be used to help us understand biology. The chain rul provides a good example of how a
principle from mathematics can be used to help us think about an analyze biological problems.

For example, in ecology, consider the growth rate of a population at time t, r(t). This growth rate
can be a function of many things, one of which is the average body size of individuals in the

⎯⎯⎯ ⎯⎯⎯population at time t, z(t). Such that the growth rate is a composite function r(t) = f ((t)).z

Ecologist are often interested in factors that determine how r(t) changes with time, or the
derivative of r(t) with respect to time d

dt
r(t) = d

dt
⎯⎯⎯ . Using the chain rule, this derivativef ((t))z

evaluates to

d
dt
f ((t)) =z ⎯⎯⎯ df ((t))z⎯⎯⎯

d (t)z⎯⎯⎯
d (t)z⎯⎯⎯

dt

Conceptually and empirically, this is very useful: The formula tells use that the change in growth
rate is a product of the change in growth rate due to changes in mean body size times the
change in mean body size with respect to time.

Ecologists can directly measure the first term in this product, i.e. they can regress growth rate on
mean body size. The second term suggests that to understand how population growth changes
through time requires consideration of how mean body size changes through time, which is a

function of both plastic responses to the environment and evolutionary changes in mean
breeding values.

⎯⎯⎯In fact, given a model for z(t), the chain rule can further tease apart the various factors that
affect changes in this quantity.

The chain rule forms the basis of the classic paper by Hairston et al. (2005).

On your own, using sympy verify the formula given by equation 5 on p. 207 of S&D.

In [16]:	 b=sp.symbols('b')

In [18]:	 sp.diff(b**x,x)

Out[18]:	 b**x*log(b)

#56, p. 213

Lets use this program to see how we can use sympy both abstractly and concretely in the
context of a problem involving the chain rule.

For this problem, the function A(x) can be entered using sympy as

In [46]:	 f=sp.Function('f')
g=sp.Function('g')
h=sp.Function('h')
A=sp.Function('A')

def A(x):

return f(g(h(x)))

In [49]:	 A(x)

Out[49]:	 f(g(h(x)))

The problem gives various values of the functions and their derivatives and wants us to evaluate
A ′ (x) at the point x = 500 . How can we combine a conceptual understanding of the derivative
and the chain rule with specific numerical instances?

First, let's try to take the derivative of A(x) using sympy.

In [53]:	 sp.diff(A(x),x)

Out[53]:	 Derivative(h(x), x)*Subs(Derivative(f(_xi_1), _xi_1), (_xi_1,), (g(h(x
)),))*Subs(Derivative(g(_xi_1), _xi_1), (_xi_1,), (h(x),))

The result involves some complicated looking stuff involving a new operator "Subs", with a
capital "S" and "Derivative" with a capital "D". These are unevaluated versions of substitution
(subs) and differentiation (diff).

(subs) and differentiation (diff).

To have Python evaluate these expressions, we can use the operator "doit()".

In [54]:	 sp.diff(A(x),x).doit()

Out[54]:	 Derivative(f(g(h(x))), g(h(x)))*Derivative(g(h(x)), h(x))*Derivative(h
(x), x)

The result is simpler, with the substitutions having been made. The Derivative is still left because
given that we have not specified specific equations for f , g, and h, their derivatives cannot be
simplified further.

Nevertheless, the resulting expression is useful and is equal to

df (g(h(x))) dg(h(x)) dh(x)

dg(h(x)) dh(x) dx

or equivalently

′ f ′(g(h(x))) g (h(x)) h ′ (x)

Using the numerical instances:

h(500) = 8

g(h(500)) = g(8) = 2

f ′(g(h(500))) = f ′(g(8)) = f ′(2) = 1

′ ′ g (h(500)) = g (8) = 1/4

h ′ (500) = 2.5 = 5/2

Together,

f ′	 ′ h ′(g(h(x))) g (h(x)) (x) = 1 × 1/4 × 5/2 = 5/8

The result indicates that the instantaneous rate of increase of antibiotic reaching the sinus cavity
at a 500mg dose of antibiotic is 5/8 mg per mg dose orally.

Note that there is actually an error in the value of the derivative given for h ′ (500) . Based on
problem 1.3.7, the value should be about 2.5 × 10−4 , such that the instantaneous rate of
increase is 1 × 1/4 × 2.5 × 10−4 = 0.0000625 .

Section 3.8: Approximations to functions and Newton's
method

The derivative forms the basis of two fundamental approaches in theoretical biology -
approximations to functions and Newton's method for solving roots of equations.

For example, often we seek to calculate the equilibrium of something - be it population size,
allele frequency or the concentration of a hormone. An equilibrium occurs when
x be the equilibrium point and xt = f () ˜ = . If we xt+1 xt

let xt+1 , then an equilibrium is the root of the equation
x̃ .= f () x̃

Furthermore, we often want to know if an equilibrium is stable or not. To test this, we often use
perturbation techniques that assume small changes in a variable. These small changes can be
accurately approximated with linear or quadratic approximations, which can often simplify
analysis and the interpretation of results.

Solving for roots

The sympy library in Scientific Python has functions for finding roots of equations. The default
approach used by sympy is the "secant method", which is an extension of Newton's method. It
is also possible to force sympy to use Newton's method.

Let's solve for the roots of the equation in Example 5 on p. 234 of S&D using sympy. To do this
we define the function for which we seek to find the roots for.

In [2]: x=sp.symbols('x')

In [188]: def f(x):
return x**3-2*x-5

In [4]: f(x)

Out[4]: x**3 - 2*x - 5

Next we use the root solver within the "mpmath" sublibrary of sympy to numerically solve for a

(http://docs.sympy.org/0.7.6/modules/mpmath/calculus/optimization.html)).
root (http://docs.sympy.org/0.7.6/modules/mpmath/calculus/optimization.html

In [9]: sp.mpmath.findroot(f,2)

Out[9]: mpf('2.0945514815423266')

The answer above agrees with the example from the textbook.

The basic information that is required in the "findroot" function is the name of the function and an
initial starting point for finding a root; in this case we chose "2" as the initial starting point. Note
the the initial starting point can sometimes be critical for accurately finding a root and/or the
particular root of interest when there are multiple roots to an equation.

http://docs.sympy.org/0.7.6/modules/mpmath/calculus/optimization.html

Are there other roots to this equation? Let's plot the equation to check.

In [2]:

In [50]:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-10,10, 256, endpoint=True)
y=f(x)

plt.xlabel('x')
plt.ylabel('f(x)')
plt.axhline(linewidth=1,color = 'black')
plt.axvline(linewidth=1,color = 'black')
plt.show(plt.plot(x,y))

Note that x and y axes were added to the plot at the origin to help us see when the function may
be equal to y = 0 . x and y axes were added using the commands plt.axhline(linewidth=1,color =
'black') and plt.axvline(linewidth=1,color = 'black').

The plot above suggests that if there is another root it is in the interval −3 < x < 3 , so we will
focus on this interval in the plot.

In [51]: x = np.linspace(-3,3, 256, endpoint=True)

y=f(x)

plt.xlabel('x')

plt.ylabel('f(x)')

plt.axhline(linewidth=1,color = 'black')

plt.axvline(linewidth=1,color = 'black')

plt.show(plt.plot(x,y))

The function does not cross y = 0 at any point other than x = 2.0946 , so this is the only root.

3Let's consider modifying the function to be f (x) = x − 2x and find the roots for this equation.

Plotting the equation indicates that there are three roots:

In [68]: def f(x):
return x**3-2*x

In [71]: x = np.linspace(-3,3, 256, endpoint=True)

y=f(x)

plt.xlabel('x')

plt.ylabel('f(x)')

plt.axhline(linewidth=1,color = 'black')

plt.axvline(linewidth=1,color = 'black')

plt.show(plt.plot(x,y))

Using the "findroot" function and different starting points reveals the three roots:

In [72]: sp.mpmath.findroot(f,2)

Out[72]: mpf('1.414213562373095')

In [73]: sp.mpmath.findroot(f,1)

Out[73]: mpf('1.414213562373095')

In [74]: sp.mpmath.findroot(f,0.1)

Out[74]: mpf('0.0')

In [75]: sp.mpmath.findroot(f,-0.1)

Out[75]: mpf('0.0')

In [76]: sp.mpmath.findroot(f,-1)

Out[76]: mpf('-1.414213562373095')

Approximations to functions

following way (http://docs.sympy.org/0.7.6/modules/mpmath/calculus/approximation.html

In [3]:

In [4]:

In [5]:

Taylor's polynomials (series)

A very commonly used technique in theoretical biology is to approximate a function using a
Taylor series. In Scientific Python the Taylor series approximation can be implemented in the

(http://docs.sympy.org/0.7.6/modules/mpmath/calculus/approximation.html)). BUT, I have
experienced some problems using the internal Taylor's function and therefore define a function to
perform the Taylor's series approximation manually.

Example 8, p. 236 - 237 S&D

First, we define the base function that we want to approximate.

f=sp.Function('f')
x=sp.symbols('x')

def f(x):
return sp.ln(x)

Next, we define a general function that will give the Taylor's series approximation to a base
function.

We will define the function using the definition for the Taylor's series. As function arguments, we
will include the function we seek the Taylor's series for, the point at which we are centering the
approximation (x0) and the degree of the approximation.

The function definition uses the "factorial()" function from the mpmath library. Furthermore, it
makes use of the notation "sp.diff(function,x, i)", which takes the ith derivative of the function
with respect to x. Note that the "0th" derivative is defined to be the original function. After
symbolically evaluating the derivative, "x0" is substituted for "x" using the subs() function. The
"while" statement adds to the apprx variable the order of the Taylor's approximation from zero up
to the "degree" specified.

def taylor(function, x0, degree):
i = 0
apprx = 0
while i <= degree:

apprx = apprx + (sp.diff(function,x, i).subs(x, x0))/(sp.mpmath.factorial
i = i + 1

return apprx

Using the general formula to calculate the Taylor's series approximation to a function, we then
define a function to equal this approximation in the following way.

http://docs.sympy.org/0.7.6/modules/mpmath/calculus/approximation.html

In [6]:	 f_taylor=sp.Function('f_taylor')

x0,degree=sp.symbols('x0 degree')

In [16]: def f_taylor(x,x0,degree):
return taylor(f(x),x0,degree)

f_taylor simplify returns the taylor approximation to the function f (x), specifying the centering
point "x0" and the "degree".

Let's see what this function outputs. We'll try a third-degree Taylor series approximation about
the point x = 1 .

In [11]: f_taylor(x,1,3)

Out[11]: 1.0*x + 0.333333333333333*(x - 1)**3 - 0.5*(x - 1)**2 - 1.0

Next, let's plot the base function and its Taylor's approximations as in figure 12 of S&D, p. 237.

To do so requires us to translate between a sympy function, in this case sp.ln(x) and f_taylor()
and numpy. This is done using the operator lambdify in sympy
(http://docs.sympy.org/latest/modules/utilities/lambdify.html
(http://docs.sympy.org/latest/modules/utilities/lambdify.html)). We need to lambdify the f_taylor()
function because it uses sympy functions internally, i.e. sp.mpmath.factorial().

Note further in the code below that we define a lambdified function of f_taylor() for each degree
of the Taylor's approximation because the stopping point of the "while" loop within the f_taylor()
function needs to be defined for the function to be lambdified. Note that by setting "degree",
f_taylor() becomes a function of two variables x and x0 and this is indicated with the first
argument "(x,x0)" in the sp.lambdify function.

http://docs.sympy.org/latest/modules/utilities/lambdify.html

In [26]: x_val = np.linspace(0.001,3, 256, endpoint=True)

y=sp.lambdify(x,f(x),"numpy")

y_val=y(x_val)

f1_taylor=sp.lambdify((x,x0),f_taylor(x,x0,1),"numpy")

f2_taylor=sp.lambdify((x,x0),f_taylor(x,x0,2),"numpy")

f3_taylor=sp.lambdify((x,x0),f_taylor(x,x0,3),"numpy")

f1_val=f1_taylor(x_val,1)

f2_val=f2_taylor(x_val,1)

f3_val=f3_taylor(x_val,1)

plt.xlabel('x')

plt.plot(x_val,y_val,color='black')

plt.plot(x_val,f1_val,color='gray')

plt.plot(x_val,f2_val,color='blue')

plt.plot(x_val,f3_val,color='red')

plt.show()

Note further that we defined each plot in a separate row and then invoked plt.show() as the last
line to show all of the define plots.

To better understand why we needed to "lambdify" the function f(x), let's try directly evaluating
y=f(x_val), which seemed the logical thing to due given our previous experience plotting in
Scientific Python.

--

In [30]: y=f(x_val)

ValueError Traceback (most recent call

last)

<ipython-input-30-8d174a004a53> in <module>()

----> 1 y=f(x_val)

<ipython-input-3-9a0b189df97c> in f(x)
1 def f(x):

----> 2 return sp.ln(x)

/Users/cort/anaconda/lib/python3.6/site-packages/sympy/core/function.p
y in __new__(cls, *args, **options)

383
 384 evaluate = options.get('evaluate', global_evaluate[0])

--> 385 result = super(Function, cls).__new__(cls, *args, **op
tions)

386 if not evaluate or not isinstance(result, cls):

387 return result

/Users/cort/anaconda/lib/python3.6/site-packages/sympy/core/function.p
y in __new__(cls, *args, **options)

197 from sympy.sets.sets import FiniteSet
198

--> 199 args = list(map(sympify, args))
200 evaluate = options.pop('evaluate', global_evaluate[0])
201 # WildFunction (and anything else like it) may have na

rgs defined

/Users/cort/anaconda/lib/python3.6/site-packages/sympy/core/sympify.py
in sympify(a, locals, convert_xor, strict, rational, evaluate)

280 try:
281 return type(a)([sympify(x, locals=locals, convert_

xor=convert_xor,
--> 282 rational=rational) for x in a])

283 except TypeError:
284 # Not all iterables are rebuildable with their typ

e.

ValueError: sequence too large; cannot be greater than 32

Note we get an error. The error output is not immediately informative, but indicates that there is a
problem applying a numpy array - in our case x_val - within a sympy function - in our case
sp.ln(x).

To evaluate a sympy function across an array of numpy values, requires us to "lambdify" the
sympy function:

In [33]: y=sp.lambdify(x,f(x),"numpy")

http:Users/cort/anaconda/lib/python3.6/site-packages/sympy/core/sympify.py

In = . x f x

 [33]: y sp lambdify(, (),"numpy")
y_val=y(x_val)
y_val

Out[33]: array([-6.90775528, -6.13185414, -5.70025928, -5.39976398, -5.16901057
,

 -4.98164776, -4.82391168, -4.68769964, -4.56783662, -4.46081523
,

 -4.3641482 , -4.27600751, -4.19501023, -4.12008478, -4.05038397
,

 -3.98522641, -3.9240559 , -3.86641249, -3.81191154, -3.76022804
,

 -3.71108497, -3.66424423, -3.61949973, -3.57667185, -3.53560311
,

 -3.49615468, -3.45820356, -3.42164021, -3.38636673, -3.35229518
,

 -3.31934636, -3.28744862, -3.25653697, -3.22655227, -3.19744054
,

 -3.16915239, -3.14164249, -3.11486917, -3.088794 , -3.06338151
,

 -3.03859884, -3.01441553, -2.99080326, -2.9677357 , -2.94518828
,

 -2.92313805, -2.90156356, -2.88044472, -2.85976268, -2.83949973
,

 -2.81963922, -2.80016549, -2.78106375, -2.76232006, -2.74392124
,

 -2.72585483, -2.70810903, -2.69067266, -2.67353511, -2.65668632
,

 -2.64011671, -2.62381719, -2.60777909, -2.59199415, -2.5764545
,

 -2.56115265, -2.54608142, -2.53123397, -2.51660374, -2.50218447
,

 -2.48797016, -2.47395507, -2.4601337 , -2.44650075, -2.43305116
,

 -2.41978007, -2.40668279, -2.39375484, -2.38099188, -2.36838977
,

 -2.3559445 , -2.34365222, -2.33150919, -2.31951186, -2.30765676
,

 -2.29594055, -2.28436003, -2.27291208, -2.2615937 , -2.250402
,

 -2.23933417, -2.22838749, -2.21755935, -2.2068472 , -2.19624858
,

 -2.18576112, -2.17538251, -2.1651105 , -2.15494294, -2.14487772
,

 -2.1349128 , -2.1250462 , -2.11527599, -2.10560033, -2.09601738
,

 -2.0865254 , -2.07712266, -2.06780752, -2.05857835, -2.04943357
,

 -2.04037167, -2.03139115, -2.02249056, -2.01366849, -2.00492357
,

 -1.99625446, -1.98765986, -1.9791385 , -1.97068914, -1.96231057
,

 -1.95400162, -1.94576114, -1.93758801, -1.92948114, -1.92143946
,

 -1.91346194, -1.90554755, -1.89769531, -1.88990425, -1.88217342

,
 -1.8745019 , -1.86688878, -1.85933318, -1.85183424, -1.84439112

,
 -1.83700299, -1.82966904, -1.82238849, -1.81516056, -1.8079845

,
 -1.80085957, -1.79378505, -1.78676022, -1.7797844 , -1.7728569

,
 -1.76597706, -1.75914423, -1.75235778, -1.74561706, -1.73892149

,
 -1.73227044, -1.72566334, -1.7190996 , -1.71257867, -1.70609999

,
 -1.699663 , -1.69326719, -1.68691203, -1.68059699, -1.67432159

,
 -1.66808532, -1.66188771, -1.65572826, -1.64960653, -1.64352204

,
 -1.63747434, -1.63146301, -1.62548759, -1.61954767, -1.61364282

,
 -1.60777263, -1.60193671, -1.59613464, -1.59036604, -1.58463053

,
 -1.57892773, -1.57325726, -1.56761877, -1.56201189, -1.55643627

,
 -1.55089157, -1.54537745, -1.53989356, -1.53443958, -1.52901519

,
 -1.52362006, -1.51825388, -1.51291635, -1.50760715, -1.50232599

,
 -1.49707258, -1.49184662, -1.48664783, -1.48147592, -1.47633063

,
 -1.47121168, -1.46611879, -1.46105171, -1.45601018, -1.45099394

,
 -1.44600274, -1.44103632, -1.43609445, -1.43117688, -1.42628337

,
 -1.42141369, -1.41656761, -1.41174491, -1.40694535, -1.40216871

,
 -1.39741479, -1.39268335, -1.3879742 , -1.38328712, -1.37862191

,
 -1.37397836, -1.36935627, -1.36475545, -1.3601757 , -1.35561682

,
 -1.35107864, -1.34656096, -1.34206359, -1.33758637, -1.33312909

,
 -1.3286916 , -1.32427371, -1.31987526, -1.31549606, -1.31113596

,
 -1.30679479, -1.30247238, -1.29816857, -1.29388321, -1.28961613

,
 -1.28536719, -1.28113622, -1.27692308, -1.27272761, -1.26854967

,
 -1.26438911, -1.2602458 , -1.25611958, -1.25201031, -1.24791786

,
 -1.24384209, -1.23978287, -1.23574006, -1.23171352, -1.22770313

,
 -1.22370877, -1.21973029, -1.21576758, -1.21182051, -1.20788896

,
 -1.2039728])

Likewise, the reason we need to set the value of "degree" when lambdifying the f_taylor()

--

Likewise, the reason we need to set the value of "degree" when lambdifying the f_taylor()
function can be seen by trying lambdify without setting the value for "degree".

In [27]: f1_taylor=sp.lambdify((x,x0,degree),f_taylor(x,x0,degree),"numpy")

TypeError Traceback (most recent call

last)

<ipython-input-27-20caa7f9f50a> in <module>()

----> 1 f1_taylor=sp.lambdify((x,x0,degree),f_taylor(x,x0,degree),"num

py")

<ipython-input-16-618acf789ebe> in f_taylor(x, x0, degree)
1 def f_taylor(x,x0,degree):

----> 2 return taylor(f(x),x0,degree)

<ipython-input-5-8a4c7913e19b> in taylor(function, x0, degree)
2 i = 0

 3 apprx = 0
----> 4 while i <= degree:

5 apprx = apprx + (sp.diff(function,x, i).subs(x, x0))/(
sp.mpmath.factorial(i))*(x - x0)**i

6 i = i + 1

/Users/cort/anaconda/lib/python3.6/site-packages/sympy/core/relational
.py in __nonzero__(self)

193
 194 def __nonzero__(self):

--> 195 raise TypeError("cannot determine truth value of Relat
ional")

196

 197 __bool__ = __nonzero__

TypeError: cannot determine truth value of Relational

Note we get an error that it cannot determine whether the "while" statement is satisfied.

Let's go back and inspect the plot of the base function and its approximation.

In [28]: x_val = np.linspace(0.001,3, 256, endpoint=True)

y=sp.lambdify(x,f(x),"numpy")

y_val=y(x_val)

f1_taylor=sp.lambdify((x,x0),f_taylor(x,x0,1),"numpy")

f2_taylor=sp.lambdify((x,x0),f_taylor(x,x0,2),"numpy")

f3_taylor=sp.lambdify((x,x0),f_taylor(x,x0,3),"numpy")

f1_val=f1_taylor(x_val,1)

f2_val=f2_taylor(x_val,1)

f3_val=f3_taylor(x_val,1)

plt.xlabel('x')

plt.plot(x_val,y_val,color='black')

plt.plot(x_val,f1_val,color='gray')

plt.plot(x_val,f2_val,color='blue')

plt.plot(x_val,f3_val,color='red')

plt.show()

x = 1 Note that near the point , the base function is well approximated, even by the linear (first-
degree) Taylor's approximation.

The equation for the linear (first-degree) Taylor's approximation is

In [29]: f_taylor(x,1,1)

Out[29]: 1.0*x - 1.0

which is a simple function and more straightforward to interpret and work with than ln(x).

We can also approximate the function around a different centering value, for example x=0.1:

In [31]:

In []:

x_val = np.linspace(0.001,0.3, 256, endpoint=True)

y=sp.lambdify(x,f(x),"numpy")

y_val=y(x_val)

f1_taylor=sp.lambdify((x,x0),f_taylor(x,x0,1),"numpy")

f2_taylor=sp.lambdify((x,x0),f_taylor(x,x0,2),"numpy")

f3_taylor=sp.lambdify((x,x0),f_taylor(x,x0,3),"numpy")

f1_val=f1_taylor(x_val,0.1)

f2_val=f2_taylor(x_val,0.1)

f3_val=f3_taylor(x_val,0.1)

plt.xlabel('x')

plt.plot(x_val,y_val,color='black')

plt.plot(x_val,f1_val,color='gray')

plt.plot(x_val,f2_val,color='blue')

plt.plot(x_val,f3_val,color='red')

plt.show()

	Structure Bookmarks
	f ′(a) = limh→0 h
	f ′(a) = limh→0 h
	In words, explain why this expression gives the rate of change of the function f (x) at the point x = a
	Chapter 3 - Derivatives.
	Section 3.1: The derivative at a point
	The derivative of a function f (x) at a point x = a is equal to the rate of change in f (x) at that point, or equivalently the slope of the line tangent to the function at the point x = a.
	On page 160 of S&D, the derivative of a function f (x) at the point x = a is deﬁned to be equal to
	2
	Let's use sympy to conﬁrm that the derivative of the function f (x)= x− 8x +9 at the point x = a is 2a − 8 as shown in Example 4 on page 161 of S&D.
	In [1]: import sympy as sp. In [3]: f=sp.Function('f'). In [4]: a,h,x=sp.symbols('a,h,x'). In [4]: def f(x):.
	return x**2-8*x+9. In [5]: sp.limit((f(a+h)-f(a))/h,h,0). Out[5]: 2*a - 8.
	Note in this example, that we deﬁned "f" to be a function data type and then later gave the functional deﬁnition for f . Furthermore, before giving the functional deﬁnition for , we also
	f
	deﬁned "x" to be a symbol data type.. With these deﬁnitions, if we typed f (x) into Python, we would get the following result..
	In [26]: f(x). Out[26]: x**2 - 8*x + 9.
	Deﬁning f (x) in this way also helped when calculating the limit of the function at the point x = a. We could essentially type into Python directly the limit-based deﬁnition of the derivative.
	An alternative way to evaluate the limit for this function at the point x = a would be
	In [28]: sp.limit(((a+h)**2-8*(a+h)+9-(a**2-8*a+9))/h,h,0)
	In [28]: sp.limit(((a+h)**2-8*(a+h)+9-(a**2-8*a+9))/h,h,0)
	Out[28]: 2*a - 8
	But encoding the function and limit this way is prone to errors and looks un-necessarily complicated.
	Let's now evaluate the derivative at the point a =3 , as done in Example 5, p. 161 of S&D. One approach to doing this is to use the substitution operation in sympy (http://docs.sympy.org/latest/tutorial/basic_operations.html
	(http://docs.sympy.org/latest/tutorial/basic_operations.html)).

	In [6]: sp.limit((f(a+h)-f(a))/h,h,0).subs(a,3)
	Out[6]: -2
	Note how we did this, sp.limit((f(a+h)-f(a))/h,h,0) is a operation that returns 2 ∗ a − 8, and this is further operated on by substituting "3" for a.
	An alternative approach is to directly substitute "3" for a in the code sp.limit((f(a+h)-f(a))/h,h,0), such as
	In [7]: sp.limit((f(3+h)-f(3))/h,h,0)
	Out[7]: -2
	This is an okay approach, but prone to errors because you need to ﬁnd each instance of a and then substitute. For the current expression, this is not a problem, but for more complicated expressions, it may be a problem.
	Estimating derivatives from empirical data
	Estimating derivatives from empirical data
	There are fairly sophisticated methods to estimate the derivative of an empirical function. For example, the data in problem #33 on p. 166-7 of S&D can be thought of as an empirical function. S&D provide a simple approach on pages 162 - 163.
	Here, we will work through problem #33,and also plot the empirical function. In doing so, we will extend our practical skills in either R or Python or both.
	First, let's plot the empirical function.
	We can think of the times and blood-alcohol values as vectors of numbers. In R, a vector of numbers [1, 1.5, 2.0, 2.5, 3.0] is entered as
	In [11]: c(1,1.5,2,2.5,3)
	1 1.5 2 2.5 3
	Let's deﬁne the vector of numbers [1, 1.5, 2.0, 2.5, 3.0] to be equal to the variable "t" sense these are times
	In [12]: t=c(1,1.5,2,2.5,3)
	Similarly, we will deﬁne the vector of blood alcohol concentrations to be equal to the variable "C"
	In [13]:)
	C=c(0.33,0.24,0.18,0.12,0.07

	Next, we'll plot the empirical function.
	plot(t,C,xlab='time (hours)',ylab='C(t) (mg/mL)')
	Figure
	The average rate of change of an empirical function over a time interval from tto tis
	1
	2
	f ()−f ()

	t2 t1
	t2 t1

	(S&D p. 162)
	t2 −t1
	The interval [1.0,2.0] corresponds to the ﬁrst and third time points, so the average rate of change is
	In [15]: (C[3]-C[1])/(t[3]-t[1])
	-0.15
	(mg/mL)
	mg

	The units for the change are , or equivalently .
	hr mLhr
	Calculate the average rate of change for at least one other time interval and verify
	Calculate the average rate of change for at least one other time interval and verify
	Calculate the average rate of change for at least one other time interval and verify

	For part b of problem #33, we can use the approach given in example 7 (page 166), whereby an estimate of the derivative is the average of the rate of change to the left of the point and the rate of change to the right of the point . x = 2 x = 2
	For part b of problem #33, we can use the approach given in example 7 (page 166), whereby an estimate of the derivative is the average of the rate of change to the left of the point and the rate of change to the right of the point . x = 2 x = 2

	In [17]:
	In [17]:
	-0.12 1/2*((C[3]-C[2])/(t[3]-t[2])+(C[4]-C[3])/(t[4]-t[3]))

	TR
	Why is it more accurate to take the average of the rate of change above and below the point, as opposed to choosing to take as the derivate the rate either above or below the point?

	TR
	Scientiﬁc Python Vectors of numbers are entered as shown below.

	In [14]:
	In [14]:
	t=[1.,1.5,2,2.5,3.]

	In [15]:
	In [15]:
	C=[0.33,0.24,0.18,0.12,0.07]

	TR
	Plotting is the same as before, except we want to plot data points only and not lines between points. To do so we add the option 'ko' to the plot command to indicate plotting "black" "points"

	(see the tutorial https://matplotlib.org/users/pyplot_tutorial.html
	(see the tutorial https://matplotlib.org/users/pyplot_tutorial.html
	(https://matplotlib.org/users/pyplot_tutorial.html)).
	Figure

	In [3]: import matplotlib.pyplot as plt
	plt.xlabel('time (hours)')plt.ylabel('C(t) (mg/ML)')plt.show(plt.plot(t,C,'ko'))
	Figure
	Note that indexing of vectors in Python starts at "0", as opposed to "1", so rates are calculated as for part (a-i) and part (b):
	In [35]: (C[3-1]-C[1-1])/(t[3-1]-t[1-1])
	Out[35]: -0.15000000000000002
	In [36]: 1/2*((C[3-1]-C[2-1])/(t[3-1]-t[2-1])+(C[4-1]-C[3-1])/(t[4-1]-t[3-1]))
	Out[36]: -0.12
	Section 3.2: Derivatives as functions and higherderivatives
	The textbook in Section 3.2 makes the technical connection between the derivative of a function at a point, which is a scalar (number-valued) versus the derivative of a function across an interval, which is function-valued. It then presents the technical basis of higher derivatives. For example, the second derivative of a function is the derivative of the derivative of a function. This is likely a review for you and we will now move toward using evaluating derivatives in R and Scientiﬁc Python using the der
	Section 3.3 - 3.4: Basic Diﬀerentiation formulas
	Using Scientiﬁc Python, it is not necessary to memorize or be able to derive various cases for the derivatives of functions. In practice, theoretical biologists let a computer algebra system perform the calculation.
	For example, consider taking the derivative of the csc(x) function. One approach to evaluating
	the derivative is to recognize that csc(x)= , and then use the quotient rule to calculate the
	sin(x)
	derivative. This approach requires remembering that the derivative of sin(x) is − cos(x), or being able to derive this equivalence.
	Alternatively, we can use the derivative function in sympy to calculate the derivative
	(http://docs.sympy.org/latest/tutorial/calculus.html).
	(http://docs.sympy.org/latest/tutorial/calculus.html)

	In [8]: sp.diff(sp.csc(x),x). Out[8]: -cot(x)*csc(x).
	Note that having imported sympy as "sp", the derivative operator is "sp.diﬀ", with the function as the ﬁrst argument and the variable as the second argument. Note further, that I am assuming that "x" has retained its status as a "symbol" in Scientiﬁc Python.
	A lovely ﬁrst-year calculus exam question might be
	dd
	dd

	Evaluate the following expression (csc(x)) .
	dx dx
	I.e., the second derivative of the function csc(x).. Not a problem:.
	In [9]: sp.diff(sp.diff(sp.csc(x),x),x). Out[9]: -(-cot(x)**2 - 1)*csc(x) + cot(x)**2*csc(x).
	Or an alternate encoding of this second derivative is
	In [10]: sp.diff(sp.csc(x),x,x) Out[10]: (2*cot(x)**2 + 1)*csc(x)
	Note we seemlingly get diﬀerent answers, but let's simplify the output of
	sp.diﬀ(sp.diﬀ(sp.csc(x),x),x), (http://docs.sympy.org/latest/tutorial/simpliﬁcation.html
	sp.diﬀ(sp.diﬀ(sp.csc(x),x),x), (http://docs.sympy.org/latest/tutorial/simpliﬁcation.html
	(http://docs.sympy.org/latest/tutorial/simpliﬁcation.html)).
	Figure

	In [13]: sp.simplify(sp.diff(sp.diff(sp.csc(x),x),x)) Out[13]: (2*cot(x)**2 + 1)*csc(x)
	If we had directly pasted the output -(-cot(x)*2 - 1)\csc(x) + cot(x)*2\csc(x) into the simplify function, we would get an error because functions cot and csc need to have an "sp." before them.
	sp.simplify(-(-cot(x)**2 -1)*csc(x) + cot(x)**2*csc(x))
	NameError Traceback (most recent call.last).<ipython-input-14-13dea8103983> in <module>().----> 1 sp.simplify(-(-cot(x)**2 -1)*csc(x) + cot(x)**2*csc(x)).
	NameError: name 'cot' is not defined.
	In [15]: sp.simplify(-(-sp.cot(x)**2 -1)*sp.csc(x) + sp.cot(x)**2*sp.csc(x))
	Out[15]: (2*cot(x)**2 + 1)*csc(x)
	What is an interpretation of the second derivative of a function?
	On your own, try problem #55 on p. 201 of S&D.
	Section 3.5: The chain rule
	Although sympy can take care of the mechanics of calculating derivatives, it's important to have a good conceptual understanding of what a derivative is, its various interpretations and how it can be used to help us understand biology. The chain rul provides a good example of how a principle from mathematics can be used to help us think about an analyze biological problems.
	For example, in ecology, consider the growth rate of a population at time t, r(t). This growth rate can be a function of many things, one of which is the average body size of individuals in the
	⎯⎯⎯ ⎯⎯⎯
	population at time t, z(t). Such that the growth rate is a composite function r(t)= f ((t)).
	z
	Ecologist are often interested in factors that determine how r(t) changes with time, or the
	derivative of
	derivative of
	derivative of
	r(t)
	with respect to time
	d dt
	r(t) =
	d dt
	⎯⎯⎯ . Using the chain rule, this derivativef ((t))z

	evaluates to
	evaluates to

	d dt
	d dt
	f ((t)) =z ⎯⎯⎯
	df ((t))z⎯ d (t)z⎯
	⎯⎯
	⎯⎯

	d (t)z⎯ dt
	⎯⎯

	Conceptually and empirically, this is very useful: The formula tells use that the change in growth rate is a product of the change in growth rate due to changes in mean body size times the change in mean body size with respect to time.
	Ecologists can directly measure the ﬁrst term in this product, i.e. they can regress growth rate on mean body size. The second term suggests that to understand how population growth changes through time requires consideration of how mean body size changes through time, which is a
	Ecologists can directly measure the ﬁrst term in this product, i.e. they can regress growth rate on mean body size. The second term suggests that to understand how population growth changes through time requires consideration of how mean body size changes through time, which is a
	function of both plastic responses to the environment and evolutionary changes in mean breeding values.

	⎯⎯⎯
	In fact, given a model for z(t), the chain rule can further tease apart the various factors that aﬀect changes in this quantity.
	The chain rule forms the basis of the classic paper by Hairston et al. (2005).
	On your own, using sympy verify the formula given by equation 5 on p. 207 of S&D.
	In [16]:. b=sp.symbols('b')
	In [18]:. sp.diff(b**x,x)
	Out[18]:. b**x*log(b)
	#56, p. 213
	#56, p. 213
	Lets use this program to see how we can use sympy both abstractly and concretely in the context of a problem involving the chain rule.
	For this problem, the function A(x) can be entered using sympy as
	In [46]:. f=sp.Function('f')g=sp.Function('g')h=sp.Function('h')A=sp.Function('A')
	def A(x):. return f(g(h(x))).
	In [49]:. A(x)
	Out[49]:. f(g(h(x)))
	The problem gives various values of the functions and their derivatives and wants us to evaluate A (x) at the point x = 500 . How can we combine a conceptual understanding of the derivative and the chain rule with speciﬁc numerical instances?
	′

	First, let's try to take the derivative of A(x) using sympy.
	In [53]:. sp.diff(A(x),x)
	Out[53]:. Derivative(h(x), x)*Subs(Derivative(f(_xi_1), _xi_1), (_xi_1,), (g(h(x)),))*Subs(Derivative(g(_xi_1), _xi_1), (_xi_1,), (h(x),))
	The result involves some complicated looking stuﬀ involving a new operator "Subs", with a capital "S" and "Derivative" with a capital "D". These are unevaluated versions of substitution (subs) and diﬀerentiation (diﬀ).
	To have Python evaluate these expressions, we can use the operator "doit()".
	In [54]:. sp.diff(A(x),x).doit()
	Out[54]:. Derivative(f(g(h(x))), g(h(x)))*Derivative(g(h(x)), h(x))*Derivative(h(x), x)
	The result is simpler, with the substitutions having been made. The Derivative is still left because given that we have not speciﬁed speciﬁc equations for f , g, and h, their derivatives cannot be simpliﬁed further.
	Nevertheless, the resulting expression is useful and is equal to
	df (g(h(x))) dg(h(x)) dh(x). dg(h(x)) dh(x) dx.
	or equivalently
	′

	f (g(h(x))) g (h(x)) h (x)
	f (g(h(x))) g (h(x)) h (x)
	′
	′

	Using the numerical instances:
	h(500) = 8. g(h(500)) = g(8) = 2. f (g(h(500))) = f (g(8)) = f (2) = 1.
	′
	′
	′

	′′
	g (h(500)) = g (8) = 1/4. h (500) = 2.5 = 5/2.
	′

	Together,
	′.′ ′
	f
	h

	(g(h(x))) g (h(x)) (x)=1 × 1/4 × 5/2 = 5/8
	The result indicates that the instantaneous rate of increase of antibiotic reaching the sinus cavity at a 500mg dose of antibiotic is 5/8 mg per mg dose orally.
	Note that there is actually an error in the value of the derivative given for h (500) . Based on problem 1.3.7, the value should be about 2.5 × 10, such that the instantaneous rate of increase is 1 × 1/4 × 2.5 × 10= 0.0000625 .
	′
	−4
	−4

	Section 3.8: Approximations to functions and Newton'smethod
	The derivative forms the basis of two fundamental approaches in theoretical biology approximations to functions and Newton's method for solving roots of equations.
	-

	For example, often we seek to calculate the equilibrium of something - be it population size,
	allele frequency or the concentration of a hormone. An equilibrium occurs when x be the equilibrium point and x
	t

	= f ()
	= f ()
	˜
	= . If we
	t+1 t
	x
	x

	let
	t+1
	x

	, then an equilibrium is the root of the equation
	x˜
	x˜
	x˜
	.= f () x˜

	Furthermore, we often want to know if an equilibrium is stable or not. To test this, we often use
	Furthermore, we often want to know if an equilibrium is stable or not. To test this, we often use

	perturbation techniques that assume small changes in a variable. These small changes can be
	perturbation techniques that assume small changes in a variable. These small changes can be

	accurately approximated with linear or quadratic approximations, which can often simplify
	accurately approximated with linear or quadratic approximations, which can often simplify

	analysis and the interpretation of results.
	analysis and the interpretation of results.

	Solving for roots
	Solving for roots

	The sympy library in Scientiﬁc Python has functions for ﬁnding roots of equations. The default
	The sympy library in Scientiﬁc Python has functions for ﬁnding roots of equations. The default

	approach used by sympy is the "secant method", which is an extension of Newton's method. It
	approach used by sympy is the "secant method", which is an extension of Newton's method. It

	is also possible to force sympy to use Newton's method.
	is also possible to force sympy to use Newton's method.

	Let's solve for the roots of the equation in Example 5 on p. 234 of S&D using sympy. To do this
	Let's solve for the roots of the equation in Example 5 on p. 234 of S&D using sympy. To do this

	we deﬁne the function for which we seek to ﬁnd the roots for.
	we deﬁne the function for which we seek to ﬁnd the roots for.

	In [2]:
	In [2]:
	x=sp.symbols('x')

	In [188]:
	In [188]:
	def f(x):

	TR
	return x**3-2*x-5

	In [4]:
	In [4]:
	f(x)

	Out[4]: x**3 - 2*x - 5
	Out[4]: x**3 - 2*x - 5
	Next we use the root solver within the "mpmath" sublibrary of sympy to numerically solve for a (http://docs.sympy.org/0.7.6/modules/mpmath/calculus/optimization.html)).
	root (http://docs.sympy.org/0.7.6/modules/mpmath/calculus/optimization.html
	Figure

	In [9]: sp.mpmath.findroot(f,2)
	Out[9]: mpf('2.0945514815423266')
	The answer above agrees with the example from the textbook.
	The basic information that is required in the "ﬁndroot" function is the name of the function and an initial starting point for ﬁnding a root; in this case we chose "2" as the initial starting point. Note the the initial starting point can sometimes be critical for accurately ﬁnding a root and/or the particular root of interest when there are multiple roots to an equation.
	Are there other roots to this equation? Let's plot the equation to check. In [2]: In [50]: import numpy as npimport matplotlib.pyplot as plt x = np.linspace(-10,10, 256, endpoint=True)y=f(x) plt.xlabel('x')plt.ylabel('f(x)')plt.axhline(linewidth=1,color = 'black')plt.axvline(linewidth=1,color = 'black')plt.show(plt.plot(x,y))
	Note that x and y axes were added to the plot at the origin to help us see when the function may be equal to y =0 . x and y axes were added using the commands plt.axhline(linewidth=1,color = 'black') and plt.axvline(linewidth=1,color = 'black').
	The plot above suggests that if there is another root it is in the interval −3< x <3 , so we will focus on this interval in the plot.
	x = np.linspace(-3,3, 256, endpoint=True).y=f(x).
	plt.xlabel('x').plt.ylabel('f(x)').plt.axhline(linewidth=1,color = 'black').plt.axvline(linewidth=1,color = 'black').plt.show(plt.plot(x,y)).
	Figure
	The function does not cross y =0 at any point other than x = 2.0946 , so this is the only root.
	3
	Let's consider modifying the function to be f (x)= x− 2x and ﬁnd the roots for this equation. Plotting the equation indicates that there are three roots:
	In [68]: def f(x): return x**3-2*x
	x = np.linspace(-3,3, 256, endpoint=True).y=f(x).
	plt.xlabel('x').plt.ylabel('f(x)').plt.axhline(linewidth=1,color = 'black').plt.axvline(linewidth=1,color = 'black').plt.show(plt.plot(x,y)).
	Figure
	Using the "ﬁndroot" function and diﬀerent starting points reveals the three roots:
	In [72]: sp.mpmath.findroot(f,2) Out[72]: mpf('1.414213562373095')
	In [73]: sp.mpmath.findroot(f,1) Out[73]: mpf('1.414213562373095')
	In [74]: sp.mpmath.findroot(f,0.1) Out[74]: mpf('0.0')
	In [75]: sp.mpmath.findroot(f,-0.1) Out[75]: mpf('0.0')
	In [76]: sp.mpmath.findroot(f,-1) Out[76]: mpf('-1.414213562373095')

	Approximations to functions.
	Approximations to functions.
	Figure
	following way (http://docs.sympy.org/0.7.6/modules/mpmath/calculus/approximation.html

	Figure
	In [3]:
	In [4]:
	In [5]:
	Taylor's polynomials (series)
	Taylor's polynomials (series)
	A very commonly used technique in theoretical biology is to approximate a function using a Taylor series. In Scientiﬁc Python the Taylor series approximation can be implemented in the
	(http://docs.sympy.org/0.7.6/modules/mpmath/calculus/approximation.html)). BUT, I have experienced some problems using the internal Taylor's function and therefore deﬁne a function to perform the Taylor's series approximation manually.

	Example 8, p. 236 - 237 S&D
	Example 8, p. 236 - 237 S&D
	First, we deﬁne the base function that we want to approximate.
	f=sp.Function('f')x=sp.symbols('x')
	def f(x): return sp.ln(x)
	Next, we deﬁne a general function that will give the Taylor's series approximation to a base function.
	We will deﬁne the function using the deﬁnition for the Taylor's series. As function arguments, we will include the function we seek the Taylor's series for, the point at which we are centering the approximation (x0) and the degree of the approximation.
	The function deﬁnition uses the "factorial()" function from the mpmath library. Furthermore, it makes use of the notation "sp.diﬀ(function,x, i)", which takes the ith derivative of the function with respect to x. Note that the "0th" derivative is deﬁned to be the original function. After symbolically evaluating the derivative, "x0" is substituted for "x" using the subs() function. The "while" statement adds to the apprx variable the order of the Taylor's approximation from zero up to the "degree" speciﬁed.
	def taylor(function, x0, degree):i = 0 apprx = 0while i <= degree:
	apprx = apprx + (sp.diff(function,x, i).subs(x, x0))/(sp.mpmath.factorial i = i + 1 return apprx
	Using the general formula to calculate the Taylor's series approximation to a function, we then deﬁne a function to equal this approximation in the following way.
	In [16]: def f_taylor(x,x0,degree): return taylor(f(x),x0,degree)
	f_taylor simplify returns the taylor approximation to the function f (x), specifying the centering point "x0" and the "degree".
	Let's see what this function outputs. We'll try a third-degree Taylor series approximation about the point x =1 .
	In [11]: f_taylor(x,1,3)
	Out[11]: 1.0*x + 0.333333333333333*(x - 1)**3 - 0.5*(x - 1)**2 - 1.0
	Next, let's plot the base function and its Taylor's approximations as in ﬁgure 12 of S&D, p. 237.
	To do so requires us to translate between a sympy function, in this case sp.ln(x) and f_taylor() and numpy. This is done using the operator lambdify in sympy
	(http://docs.sympy.org/latest/modules/utilities/lambdify.html
	(http://docs.sympy.org/latest/modules/utilities/lambdify.html
	(http://docs.sympy.org/latest/modules/utilities/lambdify.html)). We need to lambdify the f_taylor()
	Figure

	function because it uses sympy functions internally, i.e. sp.mpmath.factorial().
	Note further in the code below that we deﬁne a lambdiﬁed function of f_taylor() for each degree of the Taylor's approximation because the stopping point of the "while" loop within the f_taylor() function needs to be deﬁned for the function to be lambdiﬁed. Note that by setting "degree", f_taylor() becomes a function of two variables x and x0 and this is indicated with the ﬁrst argument "(x,x0)" in the sp.lambdify function.
	x_val = np.linspace(0.001,3, 256, endpoint=True).y=sp.lambdify(x,f(x),"numpy").y_val=y(x_val).
	f1_taylor=sp.lambdify((x,x0),f_taylor(x,x0,1),"numpy").f2_taylor=sp.lambdify((x,x0),f_taylor(x,x0,2),"numpy").f3_taylor=sp.lambdify((x,x0),f_taylor(x,x0,3),"numpy").
	f1_val=f1_taylor(x_val,1).f2_val=f2_taylor(x_val,1).f3_val=f3_taylor(x_val,1).
	plt.xlabel('x').plt.plot(x_val,y_val,color='black').plt.plot(x_val,f1_val,color='gray').plt.plot(x_val,f2_val,color='blue').plt.plot(x_val,f3_val,color='red').plt.show().
	Figure
	Note further that we deﬁned each plot in a separate row and then invoked plt.show() as the last line to show all of the deﬁne plots.
	To better understand why we needed to "lambdify" the function f(x), let's try directly evaluating y=f(x_val), which seemed the logical thing to due given our previous experience plotting in Scientiﬁc Python.
	y=f(x_val)
	ValueError Traceback (most recent call.last).<ipython-input-30-8d174a004a53> in <module>().----> 1 y=f(x_val).
	<ipython-input-3-9a0b189df97c> in f(x)1 def f(x): ----> 2 return sp.ln(x)
	/Users/cort/anaconda/lib/python3.6/site-packages/sympy/core/function.py in __new__(cls, *args, **options)
	383
	 384 evaluate = options.get('evaluate', global_evaluate[0]) --> 385 result = super(Function, cls).__new__(cls, *args, **op tions)
	386 if not evaluate or not isinstance(result, cls):.387 return result.
	/Users/cort/anaconda/lib/python3.6/site-packages/sympy/core/function.p
	y in __new__(cls, *args, **options)197 from sympy.sets.sets import FiniteSet198
	--> 199 args = list(map(sympify, args))200 evaluate = options.pop('evaluate', global_evaluate[0])201 # WildFunction (and anything else like it) may have na
	rgs defined
	/
	Users/cort/anaconda/lib/python3.6/site-packages/sympy/core/sympify.py

	in sympify(a, locals, convert_xor, strict, rational, evaluate)280 try:281 return type(a)([sympify(x, locals=locals, convert_
	xor=convert_xor,
	--> 282 rational=rational) for x in a])283 except TypeError:284 # Not all iterables are rebuildable with their typ
	e.
	ValueError: sequence too large; cannot be greater than 32
	Note we get an error. The error output is not immediately informative, but indicates that there is a problem applying a numpy array - in our case x_val - within a sympy function - in our case sp.ln(x).
	To evaluate a sympy function across an array of numpy values, requires us to "lambdify" the sympy function:
	In [33]: y=sp.lambdify(x,f(x),"numpy")
	 [33]: y sp lambdify(, (),"numpy")y_val=y(x_val)y_val
	Out[33]: array([-6.90775528, -6.13185414, -5.70025928, -5.39976398, -5.16901057
	,
	 -4.98164776, -4.82391168, -4.68769964, -4.56783662, -4.46081523
	,
	 -4.3641482 , -4.27600751, -4.19501023, -4.12008478, -4.05038397
	,
	 -3.98522641, -3.9240559 , -3.86641249, -3.81191154, -3.76022804
	,
	 -3.71108497, -3.66424423, -3.61949973, -3.57667185, -3.53560311
	,
	 -3.49615468, -3.45820356, -3.42164021, -3.38636673, -3.35229518
	,
	 -3.31934636, -3.28744862, -3.25653697, -3.22655227, -3.19744054
	,
	 -3.16915239, -3.14164249, -3.11486917, -3.088794 , -3.06338151
	,
	 -3.03859884, -3.01441553, -2.99080326, -2.9677357 , -2.94518828
	,
	 -2.92313805, -2.90156356, -2.88044472, -2.85976268, -2.83949973
	,
	 -2.81963922, -2.80016549, -2.78106375, -2.76232006, -2.74392124
	,
	 -2.72585483, -2.70810903, -2.69067266, -2.67353511, -2.65668632
	,
	 -2.64011671, -2.62381719, -2.60777909, -2.59199415, -2.5764545
	,
	 -2.56115265, -2.54608142, -2.53123397, -2.51660374, -2.50218447
	,
	 -2.48797016, -2.47395507, -2.4601337 , -2.44650075, -2.43305116
	,
	 -2.41978007, -2.40668279, -2.39375484, -2.38099188, -2.36838977
	,
	 -2.3559445 , -2.34365222, -2.33150919, -2.31951186, -2.30765676
	,
	 -2.29594055, -2.28436003, -2.27291208, -2.2615937 , -2.250402
	,
	 -2.23933417, -2.22838749, -2.21755935, -2.2068472 , -2.19624858
	,
	 -2.18576112, -2.17538251, -2.1651105 , -2.15494294, -2.14487772
	,
	 -2.1349128 , -2.1250462 , -2.11527599, -2.10560033, -2.09601738
	,
	 -2.0865254 , -2.07712266, -2.06780752, -2.05857835, -2.04943357
	,
	 -2.04037167, -2.03139115, -2.02249056, -2.01366849, -2.00492357
	,
	 -1.99625446, -1.98765986, -1.9791385 , -1.97068914, -1.96231057
	,
	 -1.95400162, -1.94576114, -1.93758801, -1.92948114, -1.92143946
	,
	 -1.91346194, -1.90554755, -1.89769531, -1.88990425, -1.88217342
	,
	 -1.8745019 , -1.86688878, -1.85933318, -1.85183424, -1.84439112
	,
	 -1.83700299, -1.82966904, -1.82238849, -1.81516056, -1.8079845
	,
	 -1.80085957, -1.79378505, -1.78676022, -1.7797844 , -1.7728569
	,
	 -1.76597706, -1.75914423, -1.75235778, -1.74561706, -1.73892149
	,
	 -1.73227044, -1.72566334, -1.7190996 , -1.71257867, -1.70609999
	,
	 -1.699663 , -1.69326719, -1.68691203, -1.68059699, -1.67432159
	,
	 -1.66808532, -1.66188771, -1.65572826, -1.64960653, -1.64352204
	,
	 -1.63747434, -1.63146301, -1.62548759, -1.61954767, -1.61364282
	,
	 -1.60777263, -1.60193671, -1.59613464, -1.59036604, -1.58463053
	,
	 -1.57892773, -1.57325726, -1.56761877, -1.56201189, -1.55643627
	,
	 -1.55089157, -1.54537745, -1.53989356, -1.53443958, -1.52901519
	,
	 -1.52362006, -1.51825388, -1.51291635, -1.50760715, -1.50232599
	,
	 -1.49707258, -1.49184662, -1.48664783, -1.48147592, -1.47633063
	,
	 -1.47121168, -1.46611879, -1.46105171, -1.45601018, -1.45099394
	,
	 -1.44600274, -1.44103632, -1.43609445, -1.43117688, -1.42628337
	,
	 -1.42141369, -1.41656761, -1.41174491, -1.40694535, -1.40216871
	,
	 -1.39741479, -1.39268335, -1.3879742 , -1.38328712, -1.37862191
	,
	 -1.37397836, -1.36935627, -1.36475545, -1.3601757 , -1.35561682
	,
	 -1.35107864, -1.34656096, -1.34206359, -1.33758637, -1.33312909
	,
	 -1.3286916 , -1.32427371, -1.31987526, -1.31549606, -1.31113596
	,
	 -1.30679479, -1.30247238, -1.29816857, -1.29388321, -1.28961613
	,
	 -1.28536719, -1.28113622, -1.27692308, -1.27272761, -1.26854967
	,
	 -1.26438911, -1.2602458 , -1.25611958, -1.25201031, -1.24791786
	,
	 -1.24384209, -1.23978287, -1.23574006, -1.23171352, -1.22770313
	,
	 -1.22370877, -1.21973029, -1.21576758, -1.21182051, -1.20788896
	,
	 -1.2039728])
	Likewise, the reason we need to set the value of "degree" when lambdifying the f_taylor()
	Likewise, the reason we need to set the value of "degree" when lambdifying the f_taylor() function can be seen by trying lambdify without setting the value for "degree".
	In [27]:
	f1_taylor=sp.lambdify((x,x0,degree),f_taylor(x,x0,degree),"numpy")
	TypeError Traceback (most recent call.last).<ipython-input-27-20caa7f9f50a> in <module>().----> 1 f1_taylor=sp.lambdify((x,x0,degree),f_taylor(x,x0,degree),"num.py").
	<ipython-input-16-618acf789ebe> in f_taylor(x, x0, degree)1 def f_taylor(x,x0,degree): ----> 2 return taylor(f(x),x0,degree)
	<ipython-input-5-8a4c7913e19b> in taylor(function, x0, degree)2 i =0 3 apprx = 0
	----> 4 while i <= degree:5 apprx = apprx + (sp.diff(function,x, i).subs(x, x0))/(sp.mpmath.factorial(i))*(x - x0)**i6 i = i +1
	/Users/cort/anaconda/lib/python3.6/site-packages/sympy/core/relational.py in __nonzero__(self)
	193
	 194 def __nonzero__(self): --> 195 raise TypeError("cannot determine truth value of Relat ional")
	196. 197 __bool__ = __nonzero__.
	TypeError: cannot determine truth value of Relational
	Note we get an error that it cannot determine whether the "while" statement is satisﬁed.
	Let's go back and inspect the plot of the base function and its approximation.
	x_val = np.linspace(0.001,3, 256, endpoint=True).y=sp.lambdify(x,f(x),"numpy").y_val=y(x_val).
	f1_taylor=sp.lambdify((x,x0),f_taylor(x,x0,1),"numpy").f2_taylor=sp.lambdify((x,x0),f_taylor(x,x0,2),"numpy").f3_taylor=sp.lambdify((x,x0),f_taylor(x,x0,3),"numpy").
	f1_val=f1_taylor(x_val,1).f2_val=f2_taylor(x_val,1).f3_val=f3_taylor(x_val,1).
	plt.xlabel('x').plt.plot(x_val,y_val,color='black').plt.plot(x_val,f1_val,color='gray').plt.plot(x_val,f2_val,color='blue').plt.plot(x_val,f3_val,color='red').plt.show().
	Figure
	x =1
	x =1
	x =1

	Note that near the point , the base function is well approximated, even by the linear (ﬁrstdegree) Taylor's approximation.
	-

	The equation for the linear (ﬁrst-degree) Taylor's approximation is
	In [29]: f_taylor(x,1,1) Out[29]: 1.0*x - 1.0
	which is a simple function and more straightforward to interpret and work with than ln(x).
	We can also approximate the function around a diﬀerent centering value, for example x=0.1:
	In []:
	x_val = np.linspace(0.001,0.3, 256, endpoint=True).y=sp.lambdify(x,f(x),"numpy").y_val=y(x_val).
	f1_taylor=sp.lambdify((x,x0),f_taylor(x,x0,1),"numpy").f2_taylor=sp.lambdify((x,x0),f_taylor(x,x0,2),"numpy").f3_taylor=sp.lambdify((x,x0),f_taylor(x,x0,3),"numpy").
	f1_val=f1_taylor(x_val,0.1).f2_val=f2_taylor(x_val,0.1).f3_val=f3_taylor(x_val,0.1).
	plt.xlabel('x').plt.plot(x_val,y_val,color='black').plt.plot(x_val,f1_val,color='gray').plt.plot(x_val,f2_val,color='blue').plt.plot(x_val,f3_val,color='red').plt.show().
	Figure

