

In [2]:
 import numpy as np

In [13]:

In [14]:

Chapters 5 & 6: Integrals and their
applications

Integrals in Scientific Python

There are many applications of integrals. A good example from ecology is given in Question #12
on p. 328 of S&D.

Approximation of an area under a function or set of functions

As indicated in section 5.1 of S&D, one approach to answering the question posed in #12 is to
break up the area under the two curves into small rectangles and sum-up the areas of each
rectangle.

For example, we could break up the interval between 2 and 3 into intervals of 0.1 and measure
the height of a rectangle as the value of the functions at the midpoint of the interval:

[1] Import numpy library

[2] Generate a vector of midpoints on the x-axis

x=np.linspace(2.05,2.95,num=10)

x

Out[14]: array([2.05, 2.15, 2.25, 2.35, 2.45, 2.55, 2.65, 2.75, 2.85,

In [15]:

In [16]:

In [17]:

2.95])

[3] Calculate value of functions at each midpoint

def n_1(x):
return (x-1)*(3-x)

def n_2(x):
return (x-2)*(4-x)

y_1=n_1(x[5:10])

"scipy" library (https://www.scipy.org/scipylib/index.html
(https://www.scipy.org/scipylib/index.html)).

In [18]: y_1

Out[18]: array([0.6975, 0.5775, 0.4375, 0.2775, 0.0975])

In [27]: y_2=n_2(x[0:5])

In [28]: y_2

Out[28]: array([0.0975, 0.2775, 0.4375, 0.5775, 0.6975])

[4] Calculate area of rectangles around each midpoint

In [29]: tot_r_1=np.sum(y_1*0.1)

In [30]: tot_r_1

Out[30]: 0.20874999999999999

In [31]: tot_r_2=np.sum(y_2*0.1)

In [32]: tot_r_2

Out[32]: 0.20874999999999999

[5] Add areas together to get total area

In [33]: tot_r_1+tot_r_2

Out[33]: 0.41749999999999998

Numerical integration of an area under a function or set of functions (see section 5.2 of S&D)

The integral allows us to directly calculate the area under the set of functions given in question
#12.

Numerical evaluation of integrals in Scientific Python is done using a new library, namely the

[1] Import the subpackage integrate from scipy

In [3]: from scipy import integrate

[2] Calculate the integrals under each function and add together

https://www.scipy.org/scipylib/index.html

Note: in scipy, the "quad" function computes a definite integral of a single variable
(https://docs.scipy.org/doc/scipy/reference/integrate.html
(https://docs.scipy.org/doc/scipy/reference/integrate.html)).

The area of niche overlap from x=2 to x=2.5 is

In [43]: integrate.quad(n_2,2,2.5)

Out[43]: (0.20833333333333334, 2.312964634635743e-15)

Note that the output from the integrate.quad function is the value of the integral and a measure
of accuracy. To just get the value of the integral we can access the first element of the result:

In [44]: integrate.quad(n_2,2,2.5)[0]

Out[44]: 0.20833333333333334

The total area is

In [45]: integrate.quad(n_2,2,2.5)[0]+integrate.quad(n_1,2.5,3)[0]

Out[45]: 0.4166666666666667

Comparing this result to our approximation using rectangles indicates the inaccuracy of the
rectangle approach.

Symbolic approach to answering question #12

You'll note that numerical integration is not necessarily perfectly accurate because although it is
a more sophisticated version of the rectangle method using midpoints, there is error associated
with it which is reflected in the accurary measure. The exact approach to calculating the area
under a function or set of functions is to determine the antiderivative of a function using by
evaluating an integral symbolically and then substitute values for the endpoints of the integral
using the Evaluation Theorem. (See section 5.3 of S&D).

[1] Import sympy to perform the symbolic calculations

In [4]: import sympy as sp

[2] Symbolically evaluate integrals and substitute endpoints

In [47]: x=sp.symbols('x')

https://docs.scipy.org/doc/scipy/reference/integrate.html

In [48]:	 n_1=sp.Function('n_1')
n_2=sp.Function('n_2')

In [49]: def n_1(x):
return (x-1)*(3-x)

In [50]: def n_2(x):
return (x-2)*(4-x)

Below are the symbolic solutions to the integrals for the two functions, using capital "N" to
indicate the antiderivative.

In [59]: N_1=sp.integrate(n_1(x),x)
N_1

Out[59]: -x**3/3 + 2*x**2 - 3*x

In [60]: N_2=sp.integrate(n_2(x),x)
N_2

Out[60]: -x**3/3 + 3*x**2 - 8*x

Below the numerical value of niche overlap is calculated by substituting endpoints into each
subregion of the integral

In [75]: (N_1.subs(x,sp.S(3))-N_1.subs(x,sp.S(5)/2))+(N_2.subs(x,sp.S(5)/2)-N_2.subs

Out[75]: 5/12

In [77]: 5/12.

Out[77]: 0.4166666666666667

Note that the exact answer is equal to the numerical integral for these sets of functions defining
the niches of species.

Why would we evaluate an integral numerically, as opposed to symbolically given that numerical
integration is not perfectly accurate?

The answer is that many functions do not have an integral that evaluates symbolically, so
numerical methods are required to approximate the integral.

Further applications of integrals

Dialysis - Question 60, p. 361

Dialysis - Question 60, p. 361

Note that for this problem, no numerical values are given for the parameters in the model for the
rate of removal of urea. Therefore, we will evaluate the integral symbolically.

[1] Define the function

In [78]:	 sp.Function('c')
t,K,V,c_0=sp.symbols('t,K,V,c_0')

In [79]: def c(t):
return K/V*c_0*sp.exp(-K*t/V)

[2] Integrate the function symbolically, i.e. find the antiderivative of the function

In [83]:	 C_t=sp.integrate(c(t),t)
C_t

Out[83]:	 -c_0*exp(-K*t/V)

[3] Use the Evaluation Theorem to evaluate the integral across an interval

In [84]:	 C_t.subs(t,30)-C_t.subs(t,0)

Out[84]:	 c_0 - c_0*exp(-30*K/V)

[4] Interpretation

To help us interpret the integral, let's go back to the definition of a definite integral in Section 5.2
of S&D. A definite integral is equal to the following

∫ f (x)dx = a	 limn→∞ ∑i=1 f (xi)Δx
b ∞

in our case the function is c and it is a function of t , so let's make these substitutions

∫ b c(t)dt = limn→∞ ∑∞ c(ti)Δta	 i=1

c t 	 is the rate urea is removed from by dialysis at time t , so Δt→0 c t t is the amount of
urea that is removed over a very small time interval.
() lim ()Δ

An integral sums these very small amounts across the interval from a to b, which corresponds to
the total amount of urea that is removed from time points a to b, where in our case a = 0 and
b = 30 .

Air intake into lungs, Question 59, p. 361

Answer this question. As part of your answer, plot the function f (t) that gives the rate of intake of
air at time t from t = 0 to t = 10 . In addition, plot the function F(t), which is the function you
derive that gives the volume of inhaled air at time t. Inspect this plot. Does it make sense? Why?

In [6]:	 f=sp.Function('f')
t=sp.symbols('t')

In [7]: def f(t):
return sp.S(1)/2*sp.sin(sp.S(2)*sp.pi*t/sp.S(5))

In [5]:	 import matplotlib.pyplot as plt

In [8]:	 t_val=np.linspace(0,10,256,endpoint=True)
lam_f=sp.lambdify(t,f(t),"numpy")
f_val=lam_f(t_val)

plt.xlabel('t')
plt.ylabel('f(t)')
plt.show(plt.plot(t_val,f_val))

In [115]: sp.integrate(f(t),t)

Out[115]: -5*cos(2*pi*t/5)/(4*pi)

In [12]: C=sp.symbols('C')

In [19]: sp.solve((-5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)).subs(t,0)+C,C)

Out[19]: [5/(4*pi)]

In [24]: -5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)+5/(4*sp.pi)

Out[24]: -5*cos(2*pi*t/5)/(4*pi) + 5/(4*pi)

http:5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)+5/(4*sp.pi

In [21]: t_val=np.linspace(0,10,256,endpoint=True)
lam_F=sp.lambdify(t,-5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)+5/(4*sp.pi),"numpy")
F_val=lam_F(t_val)

plt.xlabel('t')
plt.ylabel('f(t)')
plt.show(plt.plot(t_val,F_val))

In [29]: (-5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)+5/(4*sp.pi)).subs(t,2).evalf()

Out[29]: 0.719784991980041

In [31]: (5/(4*sp.pi)*(1-sp.cos(2*sp.pi*t/5))).subs(t,2).evalf()

Out[31]: 0.719784991980041

Survival and renewal - Example 1, p. 401

Integrals can be used to project properties of a population into the future, such as population
size, such that the number of individuals at time tN(t) is

N(t) = N(0)S(t) + ∫ t R(t)S(t − τ)dτ0

where S(t) is the probability an individual survives t time units and R(t) is the rate of
reproduction at the population level at time t.

0.1tIn the example, they define R(t) by the function R(t) = 720e , which may seem a little
strange to an ecologist.

To see why it is strange, plot R(t) for t beyond 10 years, say 100 years. Given information from
the plot, is it accurate to project beyond 10 years?

l x m x dx

Treating the parameters symbolically, try to evaluate the integral

∫ ∞ −r x () ()

In [5]:

In [7]:

import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
from scipy import integrate

t=sp.symbols('t')

t_val=np.linspace(0,100,2560,endpoint=True)
lam_R=sp.lambdify(t,720*sp.exp(0.1*t),"numpy")
R_val=lam_R(t_val)

plt.xlabel('t')
plt.ylabel('R(t)')
plt.show(plt.plot(t_val,R_val))

An alternate example, that may be more practical is calculating the reproductive value of an
individual of age a, which is the value of an organism's future offspring relative to its own current
value (Roughgarden 1979).

Define l(x) to be a function that gives the probability an individual survives to age x and m(x)
the number of offspring at age x (assume hermaphrodism). The reproductive value of an
individual is

∫ ∞ −rx = e
ra

e l(x)m(x)dx va l(a) a

where r is the growth rate of the population.

−(x−d)2
−bt gLet's assume that l(x) = e and m(x) = ce .

Plot the functions l(x) and m(x) for r=0.01, b=0.1, c=10, d=8 and g=100 for x from 0 to 40. Do
the plots make biological sense?

pack.py in _quad(func, a, b, args, full_output, epsabs, epsrel, limit
, points)
 388 return _quadpack._qagse(func,a,b,args,full_output
,epsabs,epsrel,limit)
 389 else:
--> 390 return _quadpack._qagie(func,bound,infbounds,args
,full_output,epsabs,epsrel,limit)
 391 else:
 392 if infbounds != 0:

ValueError: invalid callable given

∫ ∞ e−rx l(x)m(x)dx a

by executing the code provided below.

, click the "Interrupt" option underWhen you become impatient the "Kernel" drop-down menu to
stop the evaluation of the integral. There is no closed-form formula for this integral and the
integral will not evaluate. Consequently, numerical analysis is required or approximations.

In [41]: b,c,d,g,r,x=sp.symbols('b,c,d,g,r,x')

In []: sp.integrate(sp.exp(r*x)*sp.exp(-b*x)*c*sp.exp(-(x-d)**2/g),x)

Let's try numerically evaluating the integral using the parameter values from the plots above and
for a=2.

In [87]: integrate.quad(sp.exp(0.01*x)*sp.exp(-0.1*x)*10*sp.exp(-(x-8)**2/100),2,np

ValueError Traceback (most recent call

last)

<ipython-input-87-1728e7ff5026> in <module>()

----> 1 integrate.quad(sp.exp(0.01*x)*sp.exp(-0.1*x)*10*sp.exp(-(x-8)

**2/100),2,np.inf)

/Users/cort/anaconda/lib/python3.6/site-packages/scipy/integrate/quad

pack.py in quad(func, a, b, args, full_output, epsabs, epsrel, limit,

points, weight, wvar, wopts, maxp1, limlst)

321 if (weight is None):
322 retval = _quad(func, a, b, args, full_output, epsabs,

epsrel, limit,
--> 323 points)

324 else:
 325 retval = _quad_weight(func, a, b, args, full_output,

epsabs, epsrel,

/Users/cort/anaconda/lib/python3.6/site-packages/scipy/integrate/quad

Using the code provided we got an error. We need to "lambdify" the function because it involves
the sympy function exp(). Below is an approach to lambdify a function in the context of
integration using scipy.

In [94]: func = lambda x: sp.exp(0.01*x)*sp.exp(-0.1*x)*10*sp.exp(-(x-8)**2/100)

In [95]: integrate.quad(func,2,np.inf)

Out[95]: (61.69342638310371, 8.704829720595727e-08)

Let's imagine that we want to plot va for a from 0 to 30. How can we do this given that we do
not have a closed-form formula for va . One approach is the following:

not have a closed-form formula for . v

One approach is the following: a

First define a function that evaluates va for a specific value of a.

In [90]: def v_a(a):
return integrate.quad(func,a,np.inf)[0]

Next, plot va for a reasonable amount of points between 0 and 30.

In [91]: a_val=np.linspace(0,30,100,endpoint=True)

v_a_val=np.empty([100])

for i in range(0,100):

v_a_val[i]=v_a(a_val[i])

plt.xlabel('a')
plt.ylabel('v_a')
plt.show(plt.plot(a_val,v_a_val))

Note, we cannot use the code v_a_val = v_a(a_val) to get the values of v_a across the array a_val
in the context of using integrate.quad in the definition of the function v_a. Instead, we generated
an empty list of length a_val and then filled this list with values from v_a.

In []:

