
  

In [2]:
 import  numpy  as  np 

 
    

 
    

In [13]:
 

In [14]:
 

Chapters 5 & 6: Integrals and their
applications 

Integrals in Scientific Python 

There are many applications of integrals. A good example from ecology is given in Question #12 
on p. 328 of S&D. 

Approximation of an area under a function or set of functions 

As indicated in section 5.1 of S&D, one approach to answering the question posed in #12 is to 
break up the area under the two curves into small rectangles and sum-up the areas of each 
rectangle. 

For example, we could break up the interval between 2 and 3 into intervals of 0.1 and measure 
the height of a rectangle as the value of the functions at the midpoint of the interval: 

[1] Import numpy library 

[2] Generate a vector of midpoints on the x-axis 

x=np.linspace(2.05,2.95,num=10) 

x 

Out[14]: array([ 2.05, 2.15, 2.25, 2.35, 2.45, 2.55, 2.65, 2.75, 2.85, 

In [15]: 

In [16]: 

In [17]: 

2.95]) 

[3] Calculate value of functions at each midpoint 

def n_1(x): 
return (x-1)*(3-x) 

def n_2(x): 
return (x-2)*(4-x) 

y_1=n_1(x[5:10]) 



"scipy" library (https://www.scipy.org/scipylib/index.html 
(https://www.scipy.org/scipylib/index.html)). 

   

In [18]: y_1
 

Out[18]: array([ 0.6975, 0.5775, 0.4375, 0.2775, 0.0975])
 

In [27]: y_2=n_2(x[0:5])
 

In [28]: y_2
 

Out[28]: array([ 0.0975, 0.2775, 0.4375, 0.5775, 0.6975])
 

[4] Calculate area of rectangles around each midpoint 

In [29]: tot_r_1=np.sum(y_1*0.1) 

In [30]: tot_r_1 

Out[30]: 0.20874999999999999 

In [31]: tot_r_2=np.sum(y_2*0.1) 

In [32]: tot_r_2 

Out[32]: 0.20874999999999999 

[5] Add areas together to get total area 

In [33]: tot_r_1+tot_r_2 

Out[33]: 0.41749999999999998 

Numerical integration of an area under a function or set of functions (see section 5.2 of S&D) 

The integral allows us to directly calculate the area under the set of functions given in question 
#12. 

Numerical evaluation of integrals in Scientific Python is done using a new library, namely the 

[1] Import the subpackage integrate from scipy 

In [3]: from scipy import integrate 

[2] Calculate the integrals under each function and add together 

https://www.scipy.org/scipylib/index.html


   

Note: in scipy, the "quad" function computes a definite integral of a single variable 
(https://docs.scipy.org/doc/scipy/reference/integrate.html 
(https://docs.scipy.org/doc/scipy/reference/integrate.html)). 

The area of niche overlap from x=2 to x=2.5 is 

In [43]: integrate.quad(n_2,2,2.5)
 

Out[43]: (0.20833333333333334, 2.312964634635743e-15)
 

Note that the output from the integrate.quad function is the value of the integral and a measure 
of accuracy. To just get the value of the integral we can access the first element of the result: 

In [44]: integrate.quad(n_2,2,2.5)[0] 

Out[44]: 0.20833333333333334 

The total area is 

In [45]: integrate.quad(n_2,2,2.5)[0]+integrate.quad(n_1,2.5,3)[0] 

Out[45]: 0.4166666666666667 

Comparing this result to our approximation using rectangles indicates the inaccuracy of the 
rectangle approach. 

Symbolic approach to answering question #12 

You'll note that numerical integration is not necessarily perfectly accurate because although it is 
a more sophisticated version of the rectangle method using midpoints, there is error associated 
with it which is reflected in the accurary measure. The exact approach to calculating the area 
under a function or set of functions is to determine the antiderivative of a function using by 
evaluating an integral symbolically and then substitute values for the endpoints of the integral 
using the Evaluation Theorem. (See section 5.3 of S&D). 

[1] Import sympy to perform the symbolic calculations 

In [4]: import sympy as sp 

[2] Symbolically evaluate integrals and substitute endpoints 

In [47]: x=sp.symbols('x') 

https://docs.scipy.org/doc/scipy/reference/integrate.html


 
    

 
    

In [48]:	 n_1=sp.Function('n_1')
n_2=sp.Function('n_2') 

In [49]: def n_1(x): 
return (x-1)*(3-x) 

In [50]: def n_2(x): 
return (x-2)*(4-x) 

Below are the symbolic solutions to the integrals for the two functions, using capital "N" to 
indicate the antiderivative. 

In [59]: N_1=sp.integrate(n_1(x),x)
N_1 

Out[59]: -x**3/3 + 2*x**2 - 3*x 

In [60]: N_2=sp.integrate(n_2(x),x)
N_2 

Out[60]: -x**3/3 + 3*x**2 - 8*x 

Below the numerical value of niche overlap is calculated by substituting endpoints into each 
subregion of the integral 

In [75]: (N_1.subs(x,sp.S(3))-N_1.subs(x,sp.S(5)/2))+(N_2.subs(x,sp.S(5)/2)-N_2.subs
 

Out[75]: 5/12
 

In [77]: 5/12.
 

Out[77]: 0.4166666666666667
 

Note that the exact answer is equal to the numerical integral for these sets of functions defining 
the niches of species. 

Why would we evaluate an integral numerically, as opposed to symbolically given that numerical 
integration is not perfectly accurate? 

The answer is that many functions do not have an integral that evaluates symbolically, so 
numerical methods are required to approximate the integral. 

Further applications of integrals 

Dialysis - Question 60, p. 361 



 
     

Dialysis - Question 60, p. 361 

Note that for this problem, no numerical values are given for the parameters in the model for the 
rate of removal of urea. Therefore, we will evaluate the integral symbolically. 

[1] Define the function 

In [78]:	 sp.Function('c')
t,K,V,c_0=sp.symbols('t,K,V,c_0') 

In [79]: def c(t): 
return K/V*c_0*sp.exp(-K*t/V) 

[2] Integrate the function symbolically, i.e. find the antiderivative of the function 

In [83]:	 C_t=sp.integrate(c(t),t)
C_t 

Out[83]:	 -c_0*exp(-K*t/V) 

[3] Use the Evaluation Theorem to evaluate the integral across an interval 

In [84]:	 C_t.subs(t,30)-C_t.subs(t,0) 

Out[84]:	 c_0 - c_0*exp(-30*K/V) 

[4] Interpretation 

To help us interpret the integral, let's go back to the definition of a definite integral in Section 5.2 
of S&D. A definite integral is equal to the following 

∫ f (x)dx = a	 limn→∞ ∑i=1 f (xi)Δx
b ∞ 

in our case the function is c  and it is a function of t , so let's make these substitutions

∫ b c(t)dt = limn→∞ ∑∞ c(ti)Δta	 i=1 

c t 	  is the rate urea is removed from by dialysis at time t , so Δt→0 c t t is the amount of
urea that is removed over a very small time interval. 
( ) lim ( )Δ

An integral sums these very small amounts across the interval from a to b, which corresponds to 
the total amount of urea that is removed from time points a to b, where in our case a = 0 and 
b = 30 . 

Air intake into lungs, Question 59, p. 361 



 
     

   

 

Answer this question. As part of your answer, plot the function f (t) that gives the rate of intake of 
air at time t  from t = 0 to t = 10 . In addition, plot the function F(t), which is the function you 
derive that gives the volume of inhaled air at time t. Inspect this plot. Does it make sense? Why? 

In [6]:	 f=sp.Function('f')
t=sp.symbols('t') 

In [7]: def f(t): 
return sp.S(1)/2*sp.sin(sp.S(2)*sp.pi*t/sp.S(5)) 

In [5]:	 import matplotlib.pyplot as plt 

In [8]:	 t_val=np.linspace(0,10,256,endpoint=True)
lam_f=sp.lambdify(t,f(t),"numpy")
f_val=lam_f(t_val) 

plt.xlabel('t')
plt.ylabel('f(t)')
plt.show(plt.plot(t_val,f_val)) 

In [115]: sp.integrate(f(t),t) 

Out[115]: -5*cos(2*pi*t/5)/(4*pi) 

In [12]: C=sp.symbols('C') 

In [19]: sp.solve((-5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)).subs(t,0)+C,C) 

Out[19]: [5/(4*pi)] 

In [24]: -5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)+5/(4*sp.pi) 

Out[24]: -5*cos(2*pi*t/5)/(4*pi) + 5/(4*pi) 

http:5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)+5/(4*sp.pi


 

In [21]: t_val=np.linspace(0,10,256,endpoint=True)
lam_F=sp.lambdify(t,-5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)+5/(4*sp.pi),"numpy") 
F_val=lam_F(t_val) 

plt.xlabel('t')
plt.ylabel('f(t)')
plt.show(plt.plot(t_val,F_val)) 

In [29]: (-5*sp.cos(2*sp.pi*t/5)/(4*sp.pi)+5/(4*sp.pi)).subs(t,2).evalf() 

Out[29]: 0.719784991980041 

In [31]: (5/(4*sp.pi)*(1-sp.cos(2*sp.pi*t/5))).subs(t,2).evalf() 

Out[31]: 0.719784991980041 

Survival and renewal - Example 1, p. 401 

Integrals can be used to project properties of a population into the future, such as population 
size, such that the number of individuals at time tN(t) is 

N(t) = N(0)S(t) + ∫ t R(t)S(t − τ)dτ0 

where S(t)  is the probability an individual survives t time units and R(t) is the rate of 
reproduction at the population level at time t. 

0.1tIn the example, they define R(t) by the function R(t) = 720e , which may seem a little 
strange to an ecologist. 

To see why it is strange, plot R(t) for t  beyond 10 years, say 100 years. Given information from 
the plot, is it accurate to project beyond 10 years? 



l x m x dx

Treating the parameters symbolically, try to evaluate the integral 

∫ ∞ −r x ( ) ( )

   
   
   

   

 

 

In [5]: 

In [7]: 

import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
from scipy import integrate 

t=sp.symbols('t') 

t_val=np.linspace(0,100,2560,endpoint=True)
lam_R=sp.lambdify(t,720*sp.exp(0.1*t),"numpy") 
R_val=lam_R(t_val) 

plt.xlabel('t')
plt.ylabel('R(t)')
plt.show(plt.plot(t_val,R_val)) 

An alternate example, that may be more practical is calculating the reproductive value of an 
individual of age a, which is the value of an organism's future offspring relative to its own current 
value (Roughgarden 1979). 

Define l(x)  to be a function that gives the probability an individual survives to age x and m(x) 
the number of offspring at age x  (assume hermaphrodism). The reproductive value of an 
individual is 

∫ ∞ −rx = e
ra 

e l(x)m(x)dx va l(a) a 

where r  is the growth rate of the population. 

−(x−d)2 
−bt gLet's assume that l(x) = e  and m(x) = ce . 

Plot the functions l(x) and m(x)  for r=0.01, b=0.1, c=10, d=8 and g=100 for x from 0 to 40. Do 
the plots make biological sense? 



pack.py in _quad(func, a, b, args, full_output, epsabs, epsrel, limit
, points)
    388 return _quadpack._qagse(func,a,b,args,full_output
,epsabs,epsrel,limit)
    389 else:
--> 390 return _quadpack._qagie(func,bound,infbounds,args
,full_output,epsabs,epsrel,limit)
    391 else:
    392 if infbounds != 0:

ValueError: invalid callable given

---------------------------------------------------------------------
------

 

 

 

       
 

     
 

             

         
             

     
          

 

∫ ∞ e−rx l(x)m(x)dx a 

by executing the code provided below. 

, click the "Interrupt" option underWhen you become impatient  the "Kernel" drop-down menu to 
stop the evaluation of the integral. There is no closed-form formula for this integral and the 
integral will not evaluate. Consequently, numerical analysis is required or approximations. 

In [41]: b,c,d,g,r,x=sp.symbols('b,c,d,g,r,x') 

In [ ]: sp.integrate(sp.exp(r*x)*sp.exp(-b*x)*c*sp.exp(-(x-d)**2/g),x) 

Let's try numerically evaluating the integral using the parameter values from the plots above and 
for a=2. 

In [87]: integrate.quad(sp.exp(0.01*x)*sp.exp(-0.1*x)*10*sp.exp(-(x-8)**2/100),2,np 

ValueError  Traceback (most recent call

last)

<ipython-input-87-1728e7ff5026> in <module>()

----> 1 integrate.quad(sp.exp(0.01*x)*sp.exp(-0.1*x)*10*sp.exp(-(x-8)

**2/100),2,np.inf)
 

/Users/cort/anaconda/lib/python3.6/site-packages/scipy/integrate/quad

pack.py in quad(func, a, b, args, full_output, epsabs, epsrel, limit,

points, weight, wvar, wopts, maxp1, limlst)


321 if (weight is None):
322  retval = _quad(func, a, b, args, full_output, epsabs,

epsrel, limit,
--> 323  points)

324 else:
 325  retval = _quad_weight(func, a, b, args, full_output,

epsabs, epsrel, 

/Users/cort/anaconda/lib/python3.6/site-packages/scipy/integrate/quad 

Using the code provided we got an error. We need to "lambdify" the function because it involves 
the sympy function exp(). Below is an approach to lambdify a function in the context of 
integration using scipy. 

In [94]: func = lambda x: sp.exp(0.01*x)*sp.exp(-0.1*x)*10*sp.exp(-(x-8)**2/100) 

In [95]: integrate.quad(func,2,np.inf) 

Out[95]: (61.69342638310371, 8.704829720595727e-08) 

Let's imagine that we want to plot va  for a from 0 to 30. How can we do this given that we do 
not have a closed-form formula for va . One approach is the following: 



not have a closed-form formula for . v

 
     

 

   
    
 

 

One approach is the following: a 

First define a function that evaluates va for a specific value of a. 

In [90]: def v_a(a): 
return integrate.quad(func,a,np.inf)[0] 

Next, plot va  for a reasonable amount of points between 0 and 30. 

In [91]: a_val=np.linspace(0,30,100,endpoint=True) 

v_a_val=np.empty([100])

for i in range(0,100):


v_a_val[i]=v_a(a_val[i])
 

plt.xlabel('a')
plt.ylabel('v_a')
plt.show(plt.plot(a_val,v_a_val)) 

Note, we cannot use the code v_a_val = v_a(a_val) to get the values of v_a across the array a_val 
in the context of using integrate.quad in the definition of the function v_a. Instead, we generated 
an empty list of length a_val and then filled this list with values from v_a. 

In [ ]: 




