Environmental DNA

A new open access journal dedicated to the study and use of environmental DNA for basic and applied sciences

EDITOR-IN-CHIEF:
Louis Bernatchez
Université Laval, Québec, Canada

ASSOCIATE EDITORS:
Kristy Deiner, University of Zurich, Switzerland, and Museum of Natural History, London, UK
Dagmar Frisch, University of Birmingham, UK
Thomas Gilbert, Natural History Museum of Denmark
Daniel Heath, University of Windsor, Ontario, Canada
Margaret Hunter, U.S. Geological Survey, USA
Michael Stat, Macquarie University, Sydney, Australia
Philip Francis Thomsen, Aarhus University, Denmark
Taylor Wilcox, National Genomics Center for Wildlife and Fish Conservation, Montana, USA
Hiroki Yamanaka, Ryukoku University, Otsu, Japan

All articles published by Environmental DNA will be fully open access: immediately freely available to read, download and share

OPENING FOR SUBMISSIONS OCTOBER 2018

Environmental DNA

A new open access journal dedicated to the study and use of environmental DNA for basic and applied sciences

Environmental DNA will be a fully double-blinded peer reviewed open access journal. The journal will publish papers that pertain to the analyses of environmental DNA (eDNA) (including ancient DNA, non-invasive sampling, diet analyses, metabarcoding, metagenomics, microbial ecology and pathogens) and address questions of both basic and applied relevance. Research areas (and non-exclusive examples of applications) of interest to Environmental DNA include but are not limited to:

- **Experimental eDNA work:**
 Testing the impact of physico-chemical factors (e.g., natural biogeochemistry and PCR pollutants) on eDNA, degradation, transport, shedding and detection rate, comparing detection and abundance estimate with conventional methods

- **Trophic and community ecology:**
 Ecosystem dynamics, functional diversity, predator-prey interactions (e.g., diet analysis), host-associated microbiota

- **Palaeo-environments:**
 Past species and community diversity and abundance measurements, inference in space and time

- **Biomonitoring, conservation biology:**
 Single- and multi-species detection, comprehensive biodiversity at different scales, abundance estimates, detection of rare, cryptic and endangered species, non-invasive sampling, management (e.g., fisheries), occurrence and detection estimates

- **Invasion biology:**
 Early species detection at low abundance, passive surveillance, impacts on ecosystems, vectors and pathways of dispersal

- **Environmental assessment:**
 Impacts of pollutants and other environmental disturbance on species and communities, microbial source tracking (fecal bacteria or pathogens)

- **Physical eDNA properties:**
 Uptake and transformation based on geochemistry, particles, organic chemistry or microbial community

- **Techniques and methods:**
 Engineering development, developing, testing and evaluating eDNA biotechnology and biostatistical approaches

- **Applications in citizen science and biodiversity education**