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the so-called scenario formulation of stochastic programming. In addition to several 
modeling insights, we also discuss the application of GPS to the electricity market in 
Ontario, Canada. The examples presented in this paper illustrate that this approach can 
address dynamic games that are clearly out of reach for dynamic programming, a 
common approach in the literature on dynamic games. 
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1.  Introduction 

 We consider stochastic equilibrium problems in which players have a significant 

stake in technology, and meet their production commitments by investments in a variety 

of technologies.  For example, consider an electric power market consisting of a few 

players (suppliers), each of whom generates power using a variety of generators.  These 

generators cannot be installed instantaneously, and as a result, investment precedes 

production by several months, and sometimes, even years.  Under these circumstances, 

players make their investment decisions under uncertainty. The degree of uncertainty 

may depend on macroeconomic conditions as well as market-specific characteristics.  

The Stochastic Programming (SP) methodology is based on modeling alternative 

economic scenarios that may unfold in the future.  For the sake of computational 

tractability, these scenarios are restricted to a finite set, and with each scenario one 

associates a non-zero probability of occurrence. 

 The focus of this paper is on the development of models that may be used to 

predict investment, production, and price trajectories associated with alternative 

economic scenarios that may unfold.  However, these trajectories depend upon the 

behavior of the players.  We will study three alternative behavioral assumptions. In the 

first formulation, the players make decisions based on collection of probabilistic 

scenarios, which we refer to as a game with probabilistic scenarios (GPS).  Here the 

trajectories (investment, production, price) will depend on the scenario that unfolds; 

trajectories will be required to obey a non-clairvoyance condition which states that 

decisions cannot depend on information revealed in the future. In the SP literature, this 

condition is also referred to as the non-anticipativity requirement.  

            The second formulation we investigate is called a game with expected scenarios 

(GES) where investment decisions are based on an expected scenario (as though the 

world is deterministic). Once the investment decisions are made in a given period, one of 

the possible scenarios unfolds, and players make their production decisions in response to 

the specific scenario that unfolds. This type of behavior is not uncommon in some 

industries where the inclusion of uncertainty within an investment model leads to a very 

complicated and sometimes intractable model. For example in the electric power 

industry, one can invest in a variety of generators (nuclear, hydro, coal, gas etc.) and the 
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resulting capacity expansion models can be rather complex (e.g., WASP-IV (2000),  

Murphy, Sen and Soyster (1982)). Due to the difficulties associated with modeling 

uncertainty within a complex capacity expansion model, players may decide to replace 

the probabilistic scenarios by an expected scenario, thus leading to a GES game. 

Nevertheless, we recognize that since operation (generation) decisions are undertaken 

when better demand information becomes available (i.e. the scenario unfolds), the 

production game adapts to the scenario that unfolds.  Finally, we study a third 

formulation which we call a hybrid game (HG) which combines features from the GPS 

and GES games. 

 There are a variety of types of non-cooperative equilibria for dynamic games. In 

this paper we focus on the S-adapted open-loop equilibrium. This equilibrium concept 

was introduced by Zaccour (1987), and Haurie, Zaccour and Smeers (1990). In such an 

equilibrium each player adopts a strategy that specifies its (production and investment) 

decisions for each time period and for each possible scenario that can be observed in a 

time period. In our models, observing a scenario corresponds to knowledge of the current 

level of demand. A strategy for a firm may be viewed as a contingency plan that specifies 

actions for each time period and each possible demand state associated with a period. An 

S-adapted open-loop equilibrium is a set of strategies (plans) for players such that each 

player’s strategy maximizes its expected payoff, given the strategies of the other players. 

If uncertainty is modeled as a collection of probabilistic scenarios then an equilibrium for 

a GPS formulation is a S-adapted open loop equilibrium.  An excellent overview of the 

concept of S-adapted equilibrium, and its connections with other concepts and 

information structures (e.g. stochastic variational inequalities, piecewise open loop 

information structures etc.) are presented in Haurie and Zaccour (2004).    

 One of the early applications of the concept of S-adapted equilibrium appears in 

Haurie et al. (1987), where the European natural gas market problem is used as a basis to 

predict prices, production and capital investment. In this game theoretic setting producers 

(USSR, Netherlands, Norway 1, Norway 2, and Algeria) compete in several gas markets 

(France, Italy, Netherlands, UK, FRGer, BelLux).  This data set has also been used by  

Gurkan, Ozge and Robinson (1999), who use sample-path optimization (simulation based 

optimization) to solve stochastic variational inequalities.  It is important to observe that 
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the approach of Gurkan, Ozge and Robinson (1999) is primarily intended for single 

(rather than multi) period games.   At the other end of the spectrum, Haurie and Moresino 

(2001, 2002) have addressed extensions of the notion of S-adapted equilibrium to a 

continuous-time formulation of Cournot/Nash.  More recently, Haurie and Viguier (2003) 

apply an S-adapted Cournot/Nash equilibrium concept on a stochastic dynamic game of 

carbon emissions trading among certain countries. 

         While the equilibrium concept for GPS is based on that proposed in Haurie, 

Zaccour and Smeers (1990), our development provides extensions of their work in 

several directions.  First, our analysis points to the fact that competing game models such 

as GES might seem attractive, but using HG, we argue that the GPS game is the most 

tenable of the three.  In addition, we show that under certain assumptions (i.e., symmetric 

cost structures), the presence of volatility also provides greater expected profits in a 

game. This provides the intuition about why players in a market may continue to 

participate, even though market volatility may be on the rise. In addition, we study multi-

stage (sequential) games under uncertainty, and provide a formulation that allows 

modeling technology additions for applications in which there may be significant lags 

between the decision to invest, and time at which the plant becomes productive.  In 

contrast to the formulations cited above, we adopt an equivalent scenario-based 

formulation.  The resulting equilibrium conditions are easily applicable for problems with 

significant lags, and moreover, this formulation is amenable to solution methods for 

complementarity problems.  This helps avoid recursive value function approximations 

which is the source of the curse of dimensionality in dynamic programming.  We 

illustrate the advantages of this approach with an example that is well out of reach for 

standard dynamic programming methodology. 

 We provide conditions for existence and uniqueness of (open-loop) equilibrium 

for the game formulations that were described above. We also show that players may be 

worse off in a stochastic game (GPS) than if they play the game deterministically (GES), 

even though the environment is stochastic. This result distinguishes the multi-player 

game from a single player setting in which stochastic optimization is known to provide 

superior expected profits, when compared to deterministic optimization. 

         The paper is organized as follows. Section 2 introduces the three game formulations 
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for the two-stage case and provides an example which illustrates and compares players’ 

performances and optimal decisions in GPS and GES.  Section 3 considers multi-stage 

models of the games and provides two equivalent formulations which can be 

characterized as either recursive or non-recursive.  In addition, we present an application 

of our methodology to data from the province of Ontario, Canada.  This demonstrates the 

computational power of the SP approach. Section 4 concludes this paper with a 

discussion of future research. 

 

2.  Some Two-Stage Stochastic Programming Games 

 We consider a two-period finite player non-cooperative game where players make 

investment and production decisions under uncertainty about future demand for the 

product. In this game, uncertainty can be represented by a finite number of scenarios. 

Each scenario represents a possible realization of a random process. We assume that 

players share a common characterization of the random process. In addition, the players 

know their own production and investment cost functions and their own initial capacities. 

Each firm strives to maximize their discounted expected payoff. Given the initial capacity 

levels, all firms make their initial production decisions (in period 0) to maximize current 

profit and at the same time they choose their investment in production capacity (in period 

0). These investments in capacity become available for production in the next period 

(period 1). However demand scenarios for the next period are stochastic, and investment 

decisions must be made here-and-now. After uncertainty unfolds in period one, players 

make their production decisions. Since this is a two-stage model, we will not consider 

any investment opportunities in the final period.  

 

2.1    A Two Stage Stochastic Game 

Formally this game is defined as follows. Let the players in this game be indexed 

by {1,2,..., }i N n∈ = , where n is finite. In period 0, let 0 0 0 0
,1 ,2 ,( , ,..., )i i i i mK K K K= , 

where 0
,kiK , k=1,2,…,m, denotes the available capacity at time 0 from technology k for 

firm i. Since the demand is already realized, the players (firms) choose the production 

quantities * 0( )i iq K  for all i N∈  such that when * ,j jq q j i≡ ≠  then 
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)}()())(*({maxarg)( 0
1 ,

00*
ii

m
k iiikiii KBqqcqKQPKq ∑ ∈−∈ =          (1) 

where 0 *
, ,1 ,2 ,1 1

*( ) , ( , ,..., )n m
i k i i i i mi k

Q K q q q q q
= =

= =∑ ∑ . P(Q) is the inverse demand 

function which determines the price of output as a function of total production; this is a 

strictly decreasing function of total quantity of production in the market. )( ii qc  is the 

total cost as a function of the vector of outputs for all technologies1, and (.)iB  is a convex 

and compact production set for player i , m
iB +ℜ⊂ . 

However investment decisions *
iI  must be chosen at period 0 as well, and this 

decision must be made in the face of uncertainty which is modeled using a discrete 

random variable whose outcomes represent possible levels of future demand, indexed by 

s. Let the investment space for player i be denoted as iA , which is assumed to be non-

empty, and bounded. Thus *
i iI A∈ , such that 

{ }* * 1 * 1 1*arg max ( ) [ ( , ( , ), ( ,{ } ; ), ] | m
i i i i i i i i j j i i iI F I E f I q K s Q K K s s I A≠ +∈ − + ∈ ⊆ℜ� � �                (2) 

where period 1 production levels are * 1*( , )i iq K s  such that, 

* 1* * * 1* 1*( , ) arg max{ ( , , ( ; ), ) | ( )}i i i i i i i iq K s f I q Q K s s q B K∈ ∈ .                                              (3) 

Here 1* * 1*
,1 1

*( ; ) ( , )n m
i k ii k

Q K s q K s
= =

= ∑ ∑ , ∑ −=⋅ =
m
k iikii qcqssKQPf 1 ,

*1 )()),;(*()( , 

*0*1
iii IKK += . In the above formulation we assume that cost functions (.) (.)i iF and c  

are strictly increasing and convex, and (.)if  is strictly concave in iq . In addition, it is 

assumed that the inverse demand functions for periods zero and one are linear in Q, there 

exists a Q’ >0 such that price is zero for Q’ ≥  Q (for period one, Q’ depends on the 

scenario) and the price is finite when the quantity is zero. The strategy space for player i, 

for a given period t denoted as t
iΓ which is compact and convex and the Cartesian 

product of the production and investment decisions, so that t t t
i i iΓ =Α ×Β , but for the last 

period t t
i iΓ =Β , since there is no investment. 

 

                                                           
1 More generally, the production cost function would also depend on the amount of capital or capacity. This 
is essentially a short-run cost of production conditional on the amount of the capital input. For an example 
of this in a dynamic game analysis, see Reynolds (1986). 
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 Given above assumptions and setting there is a unique Nash equilibrium for this two 

period non-cooperative game (Okuguchi, Szidarovszky (1999)). 

2.2 A Two-Stage Game with Probabilistic Scenarios (GPS) 

The game formulated in (1), (2), and (3) can also be represented by a model using 

the so-called scenario formulation. Such a formulation provides a convenient mechanism 

for games in which players face a large number of constraints. Each possible level of 

period one demand corresponds to one scenario. For a given scenario 

{1,2,3,..., }s S ω∈ = , ω < ∞ , player i chooses beginning production quantities as * 0
,( )i i sq K  

such that when *
, , ,j s j sq q j i≡ ≠  then 

* 0 * 0 0
, , , , ,( ) arg max{ ( ( )) ( ) | ( )}i i s s i s i i s i s i i sq K P Q K q c q q B K∈ − ∈ .                             (1’) 

Here   0 * 0
, , , , , ,1 , ,2 , ,1 1

*( ) ( ) , ( , ,..., )n m
s i k i s k i s i s i s i s mi k

Q K q K q q q q
= =

= =∑ ∑ . 

For each player i and scenario s investment decisions are made in the first period 

according to the following. 

{ }* * 1 * 1 1*
, , , , , , ,arg max ( ) [ ( , ( , ), ( ,{ } ; ), ] | m

i s i i s i i i i s i s j s j i i s i sI F I f I q K s Q K K s s I A≠ +∈ − + ∈ ⊆ℜ ,     (2’) 

where period 1 production levels are * 1*
,( , )i i sq K s  which satisfy 

** 1* * * 1 1*
, , ,( , ) arg max{ ( , , ( ; ), ) | ( )}i i s i i i s i s i i sq K s f I q Q K s s q B K∈ ∈ .                                          (3’) 

Again 1* * 1*
, , ,1 1

*( ; ) ( , )n m
s i s k i si k

Q K s q K s
= =

=∑ ∑ , * 1*
, , ,1

(.) ( ( ; ), ) ( )m
i s i s k i i sk

f P Q K s s q c q
=

= −∑ , 

1* 0 *
, , ,i s i s i sK K I= + . 

 Unfortunately decisions from this formulation cannot be implemented because 

investment decisions are dependent on future scenarios that are not revealed in the 

beginning (i.e., period 0). In order to ensure that the decisions can be implemented prior 

to resolving the uncertainty, we impose the non-anticipativity (non-clairvoyance) 

constraint as 

                                   * *
,( )i s iE I I=  for all i and s .                                                           

This equation means that under uncertainty, planning decisions must be implemented 

before an outcome of the random variable is observed.  For the sake of clarity, we write 

player i’s objective function and constraints as follows. 
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 First assume that each player i predicts a market with the following scenarios. 

 

                            Figure 1: Two-stage demand scenarios 

In the subsequent section we will investigate multi-stage formulations in which a binary 

tree of this type is used to model the evolution of demand in a wholesale electricity 

market. Thus a simple scenario tree such as the one shown above may be looked upon as 

a building block for more realistic models. 

 For player i the expected profit function is the following 

 

( )

0 0 1 1 1
0 , , , , , , , , , ,

1 1 1
, , , , ,

(.) . ( ) ( ) [ . ( )]

[ . ( )] , 4

i i k i k i k i k i k up i up k i k i up k
k k k k k

down i down k i k i down k
k k

P q c q F I u P q c q

d P q c q

Π = − − + −

+ −

∑ ∑ ∑ ∑ ∑

∑ ∑
 

where 0P  is the initial price and 1
upP and 1

downP are prices in the up/down states respectively 

in period 1. Then player i’s optimization problem is; 

, ,

, , , ,

, ,
,

, , , ,

, ,

, , ,

,

max ( , , ) (4.1)

0 0,1, , , (4.2)

0 0,1 , , , (4.3)

0 , 0 0,1 , , , (4.4)

0 0 , , , (4.5)

( ) 0 0 , , , (4.6)

t t t
i i s i i s

t t
i s k i s k

t t
s i s k

i k

t t
i s k i s k

t
i s k

t t
i k i s k

i

q I K
subject to
q K t i s k

Q q t i s k

q K t i s k

I t i s k

I E I t i s k

K

Π

− ≤ = ∀

− = = ∀

≥ ≥ = ∀

≥ = ∀

− = = ∀

∑

1
, , , , , 0 0 , , , (4.7) ,t t t

s k i s k i s kK I t i s k+ − − = = ∀

 

where { , }s up down∈ . 

                                  P D Qδ= + −

P D Q= −

                                P D Qδ= − −

t=0                 t=1
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 A few remarks regarding the GPS game formulation are in order. The objective 

function maximizes the profit from the initial period plus expected profits of the future. 

Note that the equilibrium conditions are imposed for every scenario and every period t 

because of (4.3). Also, (4.6) enforces the non-anticipativity constraint discussed earlier. 

After deriving Karush-Kuhn-Tucker (KKT) conditions for the above problem we obtain a 

linear-complementarity problem, which are the natural form of optimality conditions in 

inequality-constrained problems. One can employ Argonne National Lab’s NEOS server-

PATH solver, which is a well known robust and efficient solver for such linear 

complementarity problems.   

 We also emphasize that the game formulated in (1), (2), and (3) is exactly 

equivalent to the GPS game. To see this, note that all strategies that are feasible to the 

formulation maximizing the sum of discounted payoffs are non-anticipative, and 

therefore admissible in the GPS model. Moreover, the payoff associated with such 

strategies is equal in both models.  Conversely, all strategies that are feasible to the GPS 

model are such that the first stage decision of each player can be mapped onto a feasible 

strategy in the formulation maximizing the sum of discounted payoffs. Furthermore the 

payoff associated with this strategy is the same, regardless of which model is used for 

calculating payoffs. Thus there is a one-one map between feasible strategy in each model, 

and the payoffs are identical.  Consequently, these models must provide identical 

solutions. 

2.3    A Two-Stage Game with Expected Scenarios (GES) 

 While there have been some previous attempts at modeling such stochastic 

equilibria (e.g., Haurie, et al. (1990), Pakes and McGuire (1994)), numerical solution of 

such games is not as common as their deterministic counterparts. Given this tendency to 

model games in a deterministic setting, a natural question arises: What differences might 

one observe in the performance of the players if they all played as though the future were 

well represented using deterministic models in which expected values were used for 

decision making? That is, if players replaced the scenario based inverse demand curves 

with the expected inverse demand curves, then how do they fare in a stochastic 

environment? We will investigate the consequences of a modeling assumption that 
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replaces random variables by their expectation, although the real world may involve 

uncertainty. 

 Such issues have already been addressed in the stochastic programming (SP) 

literature for the case of monopolies. There it is shown that by replacing the probabilistic 

scenarios by an expected scenario, the monopolist may paint too rosy a picture of future 

profits, when in fact, the expected profits obtained from such expected value models can 

be shown to be lower than that obtained from a stochastic decision model (see e.g., Birge 

and Louveaux (1997)). 

 We study this issue for oligopolies for the above mentioned game (GES). In the 

first step investment decisions are made from an expected scenario. In the second step, 

given these investment decisions, players choose their optimal production decisions. 

Formally it is defined in the following manner.  Let i be a player from a set 

{1,2,..., }N n= , n is finite.   In the first step the players view the future in the form of an 

expected scenario ( s ) and make investment decisions  as follows. 

{ }* 1 * 1 1*arg max ( ) [ ( , ( , ), ( ,{ } ; ), ] |i i i i i i i i j j i i iI F I f I q K s Q K K s s I A≠∈ − + ∈                 (5) 

 where  * 1* * 1* 1*( , ) arg max{ ( , , ( ; ), ) | ( )}i i i i i i i iq K s f I q Q K s s q B K∈ ∈ , 

1* * 1*
,1 1

*( ; ) ( , )n m
i k ii k

Q K s q K s
= =

=∑ ∑ and,    

* 1*
,1

( . ) ( ( ; ), ) ( )m
i i k i ik

f P Q K s s q c q
=

= −∑ ,   1* 0
i i iK K I= + , and ( )s E s= � . 

In the second step the players choose production quantities for period 0, and period 1.  In 

fact, production decisions in period 0 are not affected by investment decisions in period 

0, whereas, productions in period 1 are affected by investments in period 0.  These two 

decision problems are as follows. 

(Period 0): * 0( )i iq K  for all i N∈  such that when * ,j jq q j i≡ ≠  then 

* 0 * 0 0
,1

( ) arg max{ ( ( )) ( ) | ( )}m
i i i k i i i i ik

q K P Q K q c q q B K
=

∈ − ∈∑ ,                                 (6) 

where   0 * 0
,1 1

*( ) ( )n m
i k ii k

Q K q K
= =

=∑ ∑  and (.)iB  is the production set for player i and 

0
iK is vector of available capacities from different technologies at time 0 for player i. 

(Period 1): Production levels are * 1*( , )i iq K s  such that 

* 1* * 1* 1*( , ) arg max{ ( , , ( ; ), ) | ( )}i i i i i i i iq K s f I q Q K s s q B K∈ ∈ ,                                      (7)         
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where 1* * 1*
, ,1 1

*( ; ) ( , )n m
i s k ii k

Q K s q K s
= =

= ∑ ∑ ,  * 1*
, ,1

(.) ( ( ; ), ) ( )m
i i s k i ik

f P Q K s s q c q
=

= −∑  

1* 0
i i iK K I= +  and  iI  is determined by the first step of this game. 

 The information structure of GES is as follows. In period 1 players have the same 

information in GES as they do in GPS. Each player observes its own capacities and the 

period 1 demand scenario. In period 0 players in GES believe (or behave as if they 

believe) that demand will take on a single value (its expected value) in period 1 and that 

they and other players will choose production in period 1 optimally given that demand 

level and their capacity. In contrast, in period 0 in GPS players understand that there are 

two possible demand levels in period 1 and that production in period 1 will be chosen 

conditional on the demand level. 

 We are interested in the performance of players under the two alternative games 

(GPS and GES). Note that even in the presence of uncertainty, the players may play the 

GES process. Nevertheless, their performance should still be evaluated in a probabilistic 

setting as explained above. This performance may be expected to be different from that 

obtained via the GPS process. The question we pose is: Is there a consistent bias? That is, 

do players playing one of the games always fare better than players involved in the other? 

Within the SP literature for the case of monopolies, there is a well known result that a 

model with probabilistic scenarios provides better performance than a model with 

expected scenarios.  The difference between these values is referred to as the “value of 

the stochastic solution”.  However an analog of this result in the game setting is 

unknown. 

 Suppose that the demand scenarios are modeled by Figure 1. One may interpret δ  

in Figure 1 as a volatility level and our characterization suggests that the profitability of 

the players depends on the game they choose and the volatility of the market. The 

following lemma applies to both GPS and GES. 

Lemma 1: Consider a market with n firms facing a future that is described by two states: 

an “up” state, and a “down” state. In this market, we assume that the inverse demand 

curve is linear in either state, and these curves have the same slope, regardless of the 

state. Moreover, suppose that cost function of each firm, denoted ic , can be expressed as 

the sum of convex separable functions; that is, ( ), , ,( )i i k i k i kk k
c q g q=∑ ∑ , where ,i kg are 
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convex and differentiable. Then under either the GPS game or the GES game, each player 

produces at least as much quantity in the “up” as than in the “down” state. 

Proof: Let , ,i k uq and , ,i k dq  denote the quantities produced by firm i using technology k in 

the “up” and “down” states respectively. The claim is that  , , , ,i k u i k dk k
q q≥∑ ∑  for all i. 

Contrary to the claim, suppose that there exists an index I for which 

, , , ,I k u I k dk k
q q<∑ ∑ . Then, there must exist a technology index K such that 

, , , ,I K u I K dq q< . Now the KKT conditions for each firm imply that 

, , , , , , ,( ) ( ) ( ) 0, ,s I K s s I K I K s I K sP Q q P Q g q s u dµ′ ′+ − − = =  

where , ,,s i k si k
Q q=∑ . Since , , , ,I K u I K dq q< , it follows that , , 0I K uµ = . It follows that 

                           , , , , ,( ) ( ) ( ) 0u I K u u I K I K uP Q q P Q g q′ ′+ − = .                           

On the other hand, , , 0I K dµ ≥  implies that 

                          , , , , ,( ) ( ) ( ) 0d I K d d I K I K dP Q q P Q g q′ ′+ − ≥ .                           

Using the KKT conditions for the pair I,K, the supposition that , , , ,I K u I K dq q< , and 

( ) ( ) 0u dP Q P Q′ ′= < , we have 

, , , , , , , , , ,( ) ( ) ( ) ( ) ( ) ( )u I K u u I K I K u I K d d I K I K d dP Q q P Q g q q P Q g q P Q′ ′ ′ ′= − + < − + ≤ . 

Due to the monotonicity of the (linear) inverse demand curve, we conclude that under our 

supposition, u dQ Q> . But this inequality implies the existence of another pair, say J,T 

such that , , , ,J T d J T uq q< . Using the same arguments as above, we then come to the 

conclusion that  d uQ Q> . These contradictory conclusions imply that there cannot exist 

any index I for which , , , ,I k u I k dk k
q q<∑ ∑ , and hence the result.  ,  

 The following proposition also holds for both games. 

Proposition 1: Assume that the probability of the “up” state is at least as high as the 

probability of the “down” state and consider a case in which all players experience 

identical quadratic costs and capacities. Moreover, assume that equilibrium involves 

unconstrained production in the low-demand state. Then players’ equilibrium payoffs are 

increasing as demand volatility increases. 
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Proof:  This proof is for the case in which each firm has a single technology. The proof 

for the case of multiple technologies is similar. Given 0 0P D Q= − , 1 1
u uP D Qδ= + − , 

1 1
d dP D Qδ= − − ,  the Lagrangian function for player i  is; 

0 0 0 0
, , , , , ,

0 0 0 0 0 0
,0 ,1 , ,2 ,

( ) ( ) ( ) [( ) ( )] [( ) ( )]

( ) ( ) ( ) .
i i i i i i u i u i u i d i d i di i i

i i i i i i i u i i i i d

L D q q c q F I u D q q c q d D q q c q

K q K I q K I q

δ δ

λ λ λ

= − − − + + − − + − − −

+ − + + − + + −

∑ ∑ ∑  

The total derivative of above expression with respect to δ  is; 
00 0

, ,, ,
0 0 0

, , , ,

j d j u ji d i ui i i i i i i i i i i
j i

i i d i u i j d j u j

q q qq qdL L q L L L I L L L L
d q q q I q q qδ δ δ δ δ δ δ δ δ≠

∂ ∂ ∂∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑  

, , , ,0 0 0 0 . [1 ] . [1 ]i u j u i d j d
j i j i

u q q d q qδ δ
≠ ≠

= + + + + − ∂ ∂ − + ∂ ∂∑ ∑     (by first order necessary 

conditions), 

Case 1.  Up-state production is unconstrained. 

Let ( )c q a bq′ = + , ( )F I g hI′ = + , with non-negative coefficients a, b, g, h. From the 

first order necessary conditions 

0 0 02 0i i jj i
D q a bq q

≠
− − − − =∑ . Hence *0 ( ) /( 1 )iq D a n b= − + + . Similarly, 

*
, ( ) /( 1 )i uq D a n bδ= + − + + , *

, ( ) /( 1 )i dq D a n bδ= − − + + . Thus *
, 1/( 1 )i uq n bδ∂ ∂ = + + , 

*
, 1/( 1 )i dq n bδ∂ ∂ = − + + , and by the result of Lemma 1 and  u d≥ , it is easy to see that 

0i id d dL dδ δΠ = > . 

Case 2.  Up-state production is constrained.  

Then ** 0 0
,i u i iq K I= + , and * * 0

,(.) ( )i u iF g h q K′ = + − , and the first order condition becomes    

0
, , , ,[ 2 ] ( ) 0i u i u j u i u ij i

u D q a bq q g h q Kδ
≠

+ − − − − − − − =∑ , which   implies 

* 0
, [ ( ) ] /[ ( 1 ) ]i u iq u D a g hK u n b hδ= + − − + + + + . Thus *

, 1/( 1 / )i uq n b h uδ∂ ∂ = + + + and 

* *
, ,[1 1/( 1 / )] [1 1/( 1 )] 0i i u i ddL d uq n b h u dq n bδ = − + + + − − + + > .   ,  

Example1: The aim of this example is to compare GPS and GES games in terms of their 

performance as volatility changes. Suppose that two technologies are available for each 

player. Specifically, initially each player has 3 units of the technology 1 capacity, 

(i.e. ,1 3iK = ), and has 2 units of technology 2 capacity, (i.e. ,2 2iK = ). Investment and 



 

 

 

13 

production cost functions are 2
,1 ,1 ,1 ,1 ,1 ,1(.) (.)i i i i i iF C I and c C q= = , and 

2
,2 ,2 ,2 ,2 ,2 ,2(.) (.)i i i i i iF C I and c C q= =  , , 1i mC i= + , for technologies 1 and 2 respectively, and 

i =1,2,3,4,5. Each player i  predicts a market with the scenarios in Figure 1, where  D=90, 

u=0.5 is the probability of the “up” state, and d=0.5 is the probability of the “down” state.  

We investigate cases when δ  assumes the following values: 0,5,10,15,20,25,30. In GES, 

in the first step each player solves (5) with ( )s E s= � , in that case s=1. From here each 

player implements this investment decision to the following second step optimization 

problem. 

, ,

, , , ,

, ,
,

, , , ,

, ,

1
, , , , , ,

max ( , , ) (4.1')

0 0,1, , , (4.2 ')

0 0,1 , , , (4.3')

0 , 0 0,1 , , , (4.4 ')

0 0 , , , (4.5 ')

0 0 ,

t t t
i i s i i s

t t
i s k i s k

t t
s i s k

i k

t t
i s k i s k

t
i s k

t t t
i s k i s k i s k

q I K
subject to
q K t i s k

Q q t i s k

q K t i s k

I t i s k

K K I t+

Π

− ≤ = ∀

− = = ∀

≥ ≥ = ∀

≥ = ∀

− − = =

∑

, , (4.6 ')i s k∀

 

 In Figure 2, we illustrate player 3’s expected profit values with respect to 

volatility changes under both games. Because all players have similar cost functions, we 

observe similar figures for other players too. Note that for each volatility level, GES 

dominates GPS. In GPS, there is an investment opportunity as demand volatility 

increases. In contrast, greater demand volatility has no impact on investment decisions in  

GES since the expected level of demand is unchanged. As demand volatility increases, 

players in the GPS game increase their investments in order to take advantage of higher 

demand in the good demand state; they can leave extra capacity unutilized in the low 

demand state. We also note that changing δ  has no effect at all on ex ante (that is the 

first step of GES) expected profit. That is, the expected profit at the time the investment 

decision is being taken does not change in δ . On the other hand, if we take the average 

of profits after period one demand realizations and after firms make their period one 

production adjustments, then profit is impacted by change in δ . That is, ex post average 

profit for the GES game is increasing in δ . 
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                  Figure 2: Player 3’s performance under these games 

 

2.4     A two-stage Hybrid Game (HG) 

 In this subsection, we show that despite the possible advantage of GES over GPS, 

the former is unstable because it creates a situation in which one of the players may have 

an incentive to deviate.  In order to see this, we consider a hybrid game (HG) which is a 

combination of GPS and GES in the following manner. 

In the first step of the hybrid game all players assume that the others play according to 

the first step of GES. However, player i chooses to deviate by planning for investments 

by solving a decision model in which the probabilistic scenarios are included. Once the 

investments are in place, the second step of the game proceeds as before. It is not difficult 

to see that as long as GPS and GES have solutions, the hybrid game also has solutions. In 

such a hybrid game, we can show that player i will always be better off. 

Proposition 2 :  If a player plays HG (i.e. a player who deviates from GES and plays 

GPS and others play GES) then this player’s expected profit function is ordered as 

GES HGΠ ≤ Π  under the assumptions made above regarding demand and technology 

conditions. 

 We will give a sketch of the proof. Since all non-deviating players have 

committed their decisions then the game reduces to a single player stochastic program. 

Applying a basic result (proposition 1 of Birge and Louveaux (1997), page 140) from 

stochastic programming it follows that the expected profit of the deviating player in the 
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stochastic program exceeds that from the expected value model. The above result and the 

corresponding arguments hold in the multi-stage game (see section 3). 

 With the insight gained from the HG, let us reconsider the conclusions from 

Example 1. If only one player reacted to the positive volatility, while the other players 

retained their GES investment levels, then this player would increase their investment 

and their expected profit would rise. This increase in expected profit corresponds to the 

value of the stochastic solution, referred to earlier. But in a multi-player game setting, 

players’ payoffs are interdependent. In fact all of the players will increase their 

investments and their outputs. The net effect is that prices and expected profits are lower 

in the GPS game than in the GES game. This can be viewed as a prisoners’ dilemma 

situation. Players in the GPS game end up being worse off by pursuing what is 

individually optimal (given strategies of rival players) compared to players in the GES 

game who behave sub-optimally from an individual point of view, but more nearly 

optimally from the point of view of collective profits. 
                              
3.   Multi-stage Stochastic Programming Games 

 In this section we study multi-stage games that are generalizations of the two 

stage games presented in section 2. Multi-stage games call for sequential decision-

making on the part of each player, and the calculation of dynamic equilibrium is a non-

trivial undertaking. The difficulties are compounded when there are lags in the system 

dynamics, which is common in situations where investments in capacity are followed by 

several periods of construction prior to production.  In this section, we will show that the 

SP framework introduced in the previous section (for two-stage models) can be extended 

to the multi-stage case without significantly adding to the computational burden of 

calculating S-adapted open-loop equilibrium. The key observation that makes this 

extension possible is the introduction of multi-stage non-anticipativity constraints, which 

happen to be linear, and are easily incorporated in numerical methods.  Thus the SP 

approach opens up the possibility of computing S-adapted open-loop equilibrium for 

much larger problems than is possible using dynamic programming (DP).  We 

demonstrate the applicability of this methodology through a study which predicts 

equilibrium electricity prices for the Ontario whole-sale electricity market. To the best of 
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our knowledge, such studies of dynamic equilibrium, using realistic market data, have not 

been possible because of the exclusive reliance on DP. However, the SP approach of this 

paper provides an effective methodology for predicting dynamic equilibrium.  In section 

3.4, we will also provide some comparisons between standard DP, and the methodology 

of this paper. 

 

3.1    A Model of Demand in the Multi-stage Case 

 The scenario tree used in section 2 is highly simplified, because there was only 

one future stage with two possible outcomes. In the multi-stage formulation, the scenario 

tree can become considerably more complex. In Figure 3, we give an example of scenario 

tree, which captures the sequence in which information is revealed. Also, in the class of 

models we are considering (i.e., Stochastic Programming) decisions are not allowed to 

alter the underlying stochastic process. So the underlying stochastic process is assumed to 

be exogenous to the decision process. 

 In multi-stage formulations the demand function may be modeled as follows. 

Suppose that demand follows 2( , )N hµ  within each time period. To approximate this 

demand distribution in the scenario tree, we use the properties of m-point ( 2tm = ) 

discrete uniform distribution. The price-quantity relationship is assumed to be governed 

by the form t t taP bQ D δ+ = + � , and for t=0, 0 0δ =�  and for t=1,2,3,…,T, 

{ }
12

1
(2 1)

t

t t w
w gδ

−

=
= −� ∓ , where , , 0a b D > are given constants, and 

12
1 2

1

2 (2 1)
t

t
t

w

g h w
−

−

=

= −∑ . ,P Q +∈ ℜ and denote the market price and total output, 

respectively, and δ�  is the random variable. Figure 3 illustrates the behavior of a demand 

function. 
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Figure 3: Scenario-tree representation of demand function 

 

 Conditional probabilities are given on the arcs, with the upside probability 

denoted as ‘u’, and the downside probability denoted as ‘d’ and of course u+d=1. In 

Section 3.3., to predict Ontario wholesale electric prices we will use this demand 

structure (given that 1/ 2u = ).  

3.2  A Multi-Stage Game with Probabilistic Scenarios 

 Multi-stage games are multi-period extension of two-stage games. At any given 

period t, t is finite, players simultaneously choose investment and production decisions 

from multiple technologies. As in the previous section, investment in one period will only 

become available as productive capacity in the next period. There are more general lags 

that can also be modeled within this framework. However we omit such generalizations 

in the interest of brevity. 

 The setting for our formulation is one in which each player can only observe 

production output of the other players through the market price. We refer the reader to 

Haurie, et al. (1990) for a recursive formulation. On the other hand the non-recursive 

formulation is as follows. Let ( )M o  represent scenarios passing through node o of the 

scenario tree. As before let , ,,t t m
i s i sI q +∈ℜ  denote investment and production quantities 

associated with  m technologies. The total expected profit for a player is denoted  

D

t =0                      t=1                               t=2 t=3            …

u

u

u

u
u

u

u

d

d

d

d

d

d d

1D δ+

1D δ−

1D δ+

1D δ−

23D δ+

2D δ+

2D δ−

23D δ−

23D δ+

2D δ+

2D δ−

23D δ−

37D δ+

35D δ+

33D δ+

3D δ+

37D δ−

35D δ−

33D δ−

3D δ−

…

…

…

…

…

…

…

…

37D δ+

35D δ+

33D δ+

3D δ+

37D δ−

35D δ−

33D δ−

3D δ−

…

…

…

…

…

…

…

…



 

 

 

18 

,i s i s
s

pΠ = Π∑ , where sp  is the probability of each scenario. Formally we define this 

game as follows. 

 For a given scenario {1,2,3,..., }s S ω∈ = , each player i solves following problem: 

, ,

, , , ,
,

( , , , )
t t
i s i s

t t t t t
i s i s i s i s s

q I t
Max q I K PΠ∑ ,  t =0,1,2,3,…, T , 

  subject to 1
, , ,
t t t
i s i s i sK K I+ = + ,                                                                          (8) 

           and subject  to ,( | ( ))t t
i s iE I M o I= ,  , ,

t t
i s i sq K≤ ,  

where in (8) we have used a standard one period lag. However if there are more 

complicated time lags, then (8) needs to be modified to suit the situation being modeled; 

nevertheless the remainder of the model as well as associated algorithms remains 

unchanged. 

 Other applications in which this formulation may be advantageous include 

situations in which a player’s objective is not separable by time period. For instance, if 

the players’ objectives include risk preferences then such models may not be separable, 

and once again a non-recursive formulation becomes necessary. 

  A solution algorithm for the non-recursive formulation is as follows: 

i) The Karush- Kuhn-Tucker conditions for the problem are as follows:   , ,i t s∀  

, , , , , , , , ,

, , ,
, , ,

, , ,

, , ,

1 1
, , , ,

( ){ ( ) ( ) ( ) [ ] [ ( ) ]}

0 , 0 , 0

, ( ) 0

,

T
t t t t t t t t t t t

i s s s i s i i s i i s i s i s i s i s i s i
t

i s i s i st t t
i s i s i st t t

i s i s i s

t t t t
i s i s i s i

t t t t t
i s i s i s s i s

L t P Q q c q F I K q E I I

L L L
q I

q I

q K I E I

K K I Q q

β α λ

α
α

− −

= − − + − + −

∂ ∂ ∂
= = =

∂ ∂ ∂

≤ − =

= + −

∑

∑
0

, ,

0

0 , 0 , 0 ,t t
i i s i sK q Iκ

=

= ≥ ≥ ≥

 

where , ,( 0) , ( 0)t t
i s i sα λ≥ ≥ denote for dual prices of inequalities and non-anticipative 

conditions respectively, and ( )tβ  is a discount factor.2  

ii) Use the PATH solver for a complementarity  problem. 

                                                           
2  In example 1 we assume the discount factor to be 1, since the problems involve a fairly small number of 
stages.   
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Proposition 3: For the case of a one-period lag between investment and production, the 

recursive formulation is equivalent to the non-recursive formulation for oligopolistic 

games. 

Proof: The recursive formulation for the multi-period GPS game (hereafter NF) for a 

firm i  may also be defined in the following manner: 

, 0

0

max ( )

. . ,

, 0 , 0
o

i i
o o o

o
i i i
o m o

m A

i i i
o o

p x

s t I K q o

q x K
∈

Π

+ ≥ ∀

≥ >

∑

∑                                                          (9) 

where,  ( , )i i i
o o ox I q= , (.) ( ) ( )i i i i

o o o o oq c q F IΠ = Ρ − − , and oA denotes for ancestors of node o. 

The non-recursive formulation of the multi-stage GPS game (hereafter SF) for a firm i  

may also be defined as follows: 

, 0

0

max ( )

. . , ,

( )

, 0 , 0

st

i i
s ts ts

s t

i i i
o m ts

m A

i i
ts t

i i i
ts ts

p x

s t I K q t s

x E x

q x K

∈

Π

+ ≥ ∀

=

≥ >

∑ ∑

∑
�                                                         (10) 

where, ( , )i i i
ts ts tsx I q= , (.) ( ) ( )i i i i

ts ts ts ts tsq c q F IΠ = Ρ − −  

 Let i
ox  be a solution for NF and let oM  be the scenarios that pass through the 

node o, then for ot t=  define the following relation; 
o

i i
o t sx x=  for all os M∈ . That means 

o

i i
t s oI I=  and 

o

i i
t s oq q=  by definition of i

ox . But these two equalities are just non-

anticipativity constraints of SF, and so that (.) (.)i i
ts o

t
Π = Π∑ , then we see that proposed 

solution is a feasible solution of SF. By existence and uniqueness theorems this feasible 

solution is same as the solution of NF. The reverse is similar. Because, if we have non-

anticipative solutions, then the fact that the I, q are non-anticipative imply that they are 

constant at any node, thus letting us set the value of the node variable for I, q to assume 

the same value as that of all scenarios passing through node o.,  
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Proposition 4:  The non-cooperative games defined in this paper together with the above 

demand and technology conditions admit a unique solution. 

 For a proof see Haurie, et al. (1990) or see the proofs of theorems 7.1 and 7.7 in 

Friedman (1977). 

 

3.3   Application to the Ontario wholesale electricity market 

In November 1998, the Government of Ontario passed the Energy Competition 

Act, which divided Ontario Hydro into several companies including the Independent 

Electricity Market Operator (IMO), Hydro One, and Ontario Power Generation (OPG).  

The Act aimed at creating competitive market, and after extensive debates the wholesale 

Ontario electricity market commenced on May 1, 2002. Currently the IMO is the market 

administrator and responsible for a fair and competitive marketplace. In the process of 

making sure that supply matches demand, the IMO is also responsible for reliability 

issues. Hydro One mainly transmits power, while OPG generates most of the electricity 

consumed. Prior to the opening of the wholesale market, OPG divested some nuclear 

plants and gas-fueled plants to independent generation companies. The Ontario Energy 

Board (OEB) regulates the rates that end-user customers pay. In Table 1 we present 

Ontario’s existing generation resources, installed capacities, ownership and percentage of 

the capacities (see www.theimo.com). 

 

Table 1: Ontario’s existing power generation structure 

 

Ownership Technology Installed Capacity, MW % of total
Bruce nuclear 4,728 15.5
NUGA oil/gas 2,224 7.3
OPG nuclear 6,103 20
OPG green 66 0.2

OPG & affiliates hydroelectric 7,676 25.2
OPG oil/gas 2,140 7
OPG coal 7,564 24.8  

               

In this table, we have designated wind, solar, biomass and geothermal generation 

resources as “green” technology.  The total installed generation capacity in Ontario 
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amounts to 30,501 MW (megawatt energy). OPG owns three (comprising of four units at 

Darlington, four units at Pickering B and one unit at Pickering A) out of five nuclear 

stations. Other nuclear generation facilities owned by Bruce Nuclear (hereafter Bruce), 

which is comprised of Bruce A and Bruce B, is Ontario’s the largest independent power 

generator. All hydroelectric generation in Ontario belongs to OPG - Niagara, Northeast, 

Northwest, Ottowa/St.Lawrence groups and OPG Evergreen Energy Division. All of the 

five coal fired stations (Atikokan, Lakeview, Lambton, Nanticoke, and Thunder Bay) are 

also owned by OPG. OPG also owns Lennox Generating Station, which is fueled by 

natural gas and oil. The other less significant power source is wind power. OPG owns 

three wind stations, and its capacity is estimated to be less than 50 MW. There are other 

non-utility generators (NUG) in Ontario that are mostly fueled by natural gas and oil. 

According to APPrO (Association of Power Producers of Ontario), the NUG have 1307 

MW capacities of gas fueled generation stations. Also ATCO Power Ltd., the giant 

Alberta utility has recently been operating a 625 MW plant in Windsor, Ontario. This 

plant is a natural gas fired plant. In addition, Imperial Oil Ltd and Northland Power Inc 

installed a total of 130 MW gas-fired turbines in 2004 (in Ontario). All the capacity data 

reported above are obtained from IMO, OPG, APPrO, Hydro-One web pages. IMO states 

that the rest of the suppliers are small and some are already affiliated with OPG and some 

are independent generators. In Table 1, NUGA refers to the total power provided by 

NUG, ATCO Power, Imperial Oil and Northland Power Inc. 

Using the SP modeling paradigm, we perform an analysis to forecast capital 

investment decisions. We assume that each time stage, t, represents a year and run the 

model for five years. Note that we do not model the impact of forward contracts on the 

spot market since there is currently no forward market in Ontario. We obtained hourly 

demand data from May 1, 2002 (opening of the competitive wholesale market) to May 1, 

2004 and transformed it to average hourly value for the day and hourly value for the year. 

In the analysis time stage t = 0 corresponds to May 1, 2004 - May 1, 2005, similarly other 

stages.  We focus on suppliers OPG, Bruce, NUGA and treat NUGA as a single supplier. 

Energy supply distribution (terawatt hour) by fuel type between May 2003 and April 

2004 were 42% nuclear, 23% hydro, 21% coal, 8% other (including natural gas, oil, 

wind, solar, biomass) and 6% imports (see IMO year in review report 2003-2004). 
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According to National Energy Board’s energy market assessment report, Market Power 

Mitigation Agreement (MPMA) was developed to reduce OPG’s share of the generation 

market. It is required to reduce its fossil generation capacity and to have at most 35% of 

the total generation capacity.  

We consider two cases: one with three players in the market, the other with five 

players in the market. In Ontario, a five-dominant-player market is expected as a result of 

divestiture of the largest supplier OPG.  

In Table 2, we represent the players, their generation technologies, the upper 

bounds of available in-use capacities, and average variable operation and maintenance 

costs of the technologies. In the second case, the five-player market, we will assume that 

OPG will keep its hydro, nuclear and green power facilities. 

 

      Table 2: The Ontario market player-technology-cost-capacity structure. 
 

                          

Suppliers Technology Max.in_use_cap (MWe) Cost ($/MWh)
Bruce    nuclear 3,329 4.56
NUGA    oil/gas 1,458 25.46

   nuclear 4,298 4.56
   green 66 0

OPG    hydro 4,177 0
   oil/gas 1,431 25.46
   coal 3,814 21.96



                             

 

Based on the above energy supply distribution we calculated available in use-

capacities of each player. Since in general marginal units that cleared the market are gas 

and oil fueled generators, and OPG and NUGA have oil/gas plants, we attributed imports 

(from the interconnecting grid of other jurisdictions such as New York, Michigan, 

Minnesota, and Manitoba) to them, and increased their maximum in use capacities for 

oil/gas plants at the average level of imports.   

Table 2 implies that almost 70% of the installed nuclear generation, 55.4% of the 

total hydroelectric capacity, 50.4% of the total installed coal turbine generation capacity, 

31.8% capacity of oil/gas fired stations  are available on average to meet the demand for 

each hour. We also assume that green technology works with 100% capacity all the time.  
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In the last column of Table 2 we present the cost structures of the technologies. Firm 

level cost data in general is private and not disclosed. Thus we could not obtain all 

detailed information such as type and brand names of the generators, their heat rates per 

year, heat rates nth of-a-kind, overnight costs, fixed operation and maintenance costs, and 

contingency factors. However we obtained variable operation and maintenance costs of 

the technologies. This information is obtained from Energy Information Administration-

assumptions to the annual energy outlook 2004 booklet. All prices are inflation adjusted 

(we assumed 3% inflation per year) and are in year 2004 dollars. Above oil/gas price 

represents average price of IGCC (integrated gasification gas combined cycles) with 

carbon sequestration, convertible gas/oil combined cycle, and advanced combined cycle 

with carbon sequestration type technologies. We assume constant marginal cost of 

production up to capacity. 

For capital investment decisions, we use the following overnight construction 

costs of the technologies provided by Taylor (2002) (These costs are very close to the 

cost figures defined by Energy Information Administration-assumptions to the annual 

energy outlook 2004 booklet). These costs include contingency factors, technological 

optimism and learning factors, but exclude regional multipliers.  

 

                     Table 3: Overnight construction costs by technology ($/KWe) 

 

                                        

Technology 2005 year startup costs
   nuclear 1600

   coal 1080
   large hydro 1800

gas/oil 450
green(wind) 800  

 

We assume constant marginal cost of adding capacity. These costs are presented 

in terms of US$; we assumed same costs in CA$ because of similar purchasing power per 

consumption basket.  

We use a linear demand with constant slope and varying intercepts similar to 

Green and Newbery (1992), Wolfram (1999), and Garcia-Diaz and Marin (2003), 
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however we use scenario tree representation of a demand model that depicted in Figure 3, 

in which we assume equal ‘up’ and ‘down’ state probabilities.  

For short run analysis of prices, random walk models may not explain the 

behavior of the energy prices. Instead, mean reverting processes are recommended 

because it is assumed that the market price might converge to its marginal cost price after 

several jumps. In order to distinguish between short term and long term price processes, 

we used Dickey-Fuller unit root tests on daily, weekly, monthly and quarterly wholesale 

electric prices in the Ontario market from May 1, 2002 to September 14, 2004. We 

observe that as time interval enlarges and sample size decreases prices tend to follow 

random walk. (This observation is consistent with the literature, e.g., see Dixit and 

Pindyk (1997)). Specifically we find that, mean reverting process captured only for daily 

and weekly prices. However, with the random walk approach, as time period increases 

the volatility of prices tend to explode, which is the main criticism of this approach to 

predict energy prices. Hence, we employ m-point discrete uniform distribution to 

approximate a Normal distribution given that hourly MW for the year is normally 

distributed. Specifically we utilize the following.  

Let the hourly load for a year be distributed 2( , )N hµ . We calculate 

1,089h = MW based on the IMO predictions on the load volatility for the years 2005 

through 2014. The average hourly price for the year (period) May 1, 2003-Apr 31, 2004 

is $48.2, and hourly load for the year is 18,055MW. Assume that  ( )t tQ p pα β= −  

denotes electricity demand, in which ( )tQ p  is the hourly load for time (year) t at the 

price p. Also assume that price elasticity of demand be 0.2. This elasticity levels is 

commonly assumed for the wholesale electricity markets (see, for example, Wolfram 

(1999), Taylor (1975), Branch (1993)).    Then we calculate 75β = . Let 

(1 )t
t e tDα ρ δ= + + , where ( ) {0.006, 0.009, 0.013}

e eρ = , (e = low, medium, high), are 

the  growth rates of the demand that IMO expects for the future  per year. Given the 

above information, for t = 0 (initial node), in which 0 0δ = , we calculate that 21,670D = . 

Hence in the initial node we have the demand function 0 ( ) 21,670 75Q p p= − . 

Accordingly, the m-point discrete uniform distribution described in Section 3.1 will use 
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an “up” demand scenario of 1, ( ) (1 )up eQ p D h pρ β= + + −  for t = 1, and a “down” 

demand scenario will be 1, ( ) (1 )down eQ p D h pρ β= + − − , with equal probabilities ½ and 

½ . Demand scenarios for other periods are obtained by the process that is described in 

Section 3.1.  

Each player’s optimization problem is similar to the formulation of (4.1) - (4.7). 

(For the sake of brevity we do not rewrite the optimization problem for each player.)  We 

extend the time to five stages ( 0, 1, 2, 3, 4t = ) and will allow depreciation in 

technologies for each period and add salvage value to the profit at the last period. To 

implement this, we assume that each technology has 30-year life period and each 

technology depreciates linearly in each year. Formally, we replace capacity constraint 

(4.7) with 1
, , , , , ,(1 )t t t

i s k i s k i s kK K r I+ = − +  for all t, i, s, k, where in general {0, 1/ 30}r∈ . A 

salvage value for each type of technology equal to a high percentage of the replacement 

of the capacity (e.g., 90 % of the replacement cost) is added to the profit function of each 

player i at time  t=4. That is, we will add , , , ,,
t

s i s k i s ks k
p K F υ′∑  to the profit, where 0.9υ = , 

sp  is a probability of scenario s, F ′  is the installment (or replacement) cost of each unit 

of technology.  

 We model the market as a game with probabilistic scenarios and compute the 

unique S-adapted open-loop equilibrium. Admittedly, in this simplified version of 

Ontario wholesale electricity market model we assumed that all generators run 

continuously during the study period, however in reality this holds only for nuclear-

generated power. Hydroelectric generators may provide base-load and peak generation 

depending on the level of water availability. Coal generators start up early morning and 

run till late in a day and natural gas and oil plants usually used to meet the peak demand.  

 

Example 2: We use the setup in Tables 2 and 3 and run the stochastic programming 

model using PATH solver. We make two sets of runs. In each run we compare the 

equilibrium results of two-cases; the three-player market versus the five-player market, 

for each level of growth in market demand (low-growth, medium-growth, high-growth in 

demand). The five-player case involves the case in which OPG divests its oil/gas 

generation facilities to Player 4 and its coal fired units to Player 5 in the beginning of the 
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game. (For those players’ capacity and cost levels see the last two rows of the Table 2.) 

Again first three players are OPG, Bruce and NUGA. This divestiture is a likely scenario 

to be expected in the market, and is consistent with the Market Power Mitigation 

Agreement in Ontario.  

In Tables 4a and 4b we report the first run (no capacity depreciation - no salvage 

value case) equilibrium price outcomes, expected price, standard deviation, maximum 

and minimum prices ($/MWh for each year). We observe that when number of players 

increased from three to five, yearly average market price reduced 28% and yearly average 

price volatility decreased 23%. Since demand growth levels are small and close to each 

other, equilibrium prices are similar to each other across demand growths. The difference 

between maximum and minimum price levels is also small.  

 
Table 4a. Yearly price levels with 3 players (no salvage value & no depreciation)  
 
    Demand Growth   

Period Low (0.6%) Medium (0.9%) High (1.3%) 
0=4.1.04-05 (114.8, -, 114.8, 114.8) (114.8, -, 114.8, 114.8) (114.8, -, 114.8, 114.8) 
1=4.1.05-06 (95.8, 10.2, 103.1, 88.5)  (95.7, 10.2, 103.0, 85.5)  (95.7, 10.3, 102.9, 88.4) 
2=4.1.06-07 (96.0, 7.6, 105.0, 87.0) (96.3, 7.6, 105.3, 87.3) (96.7, 7.5, 105.6, 87.8) 
3=4.1.07-08 (96.9, 7.1, 107.3 , 86.5) (97.6, 7.1, 108.0, 87.3) (98.7, 7.0, 108.9, 88.4) 
4=4.1.08-09 (97.8, 6.9, 108.9, 86.6) (99.0, 6.8, 110.0, 87.9) (100.6, 6.7, 111.6, 89.6) 
      
                             ( Expected price, standard deviation, max price, min price) 
 
 
Table 4b. Yearly price levels with 5 players (no salvage value & no depreciation)  
 
    Demand Growth   

Period Low (0.6%) Medium (0.9%) High (1.3%) 
0=4.1.04-05 (79.8, -, 79.8, 79.8) (79.8, -, 79.8, 79.8) (79.8,  - , 79.8, 79.8) 
1=4.1.05-06 (70.0, 7.4, 75.2, 64.7) (70.0, 7.4, 75.3, 64.8) (70.1, 7.4, 75.3, 64.8) 
2=4.1.06-07 (70.3, 5.9, 77.7, 63.7) (70.6, 5.9 , 78.0, 64.0) (70.9, 5.8, 78.3, 64.4) 
3=4.1.07-08 (71.1, 5.4, 80.0, 64.4) (71.7, 5.4, 80.6, 65.0) (72.6, 5.5, 81.6, 65.9) 
4=4.1.08-09 (71.7, 5.8, 81.6, 63.5) (72.7, 5.6, 82.7, 64.4) (74.1, 5.8, 84.3, 65.6) 
      
                             ( Expected price, standard deviation, max price, min price) 
 
 

In Tables 5a and 5b we report the second run (capacity depreciation & 90% 

salvage value case) predicted equilibrium price outcomes ($/MWh for each year).  This 
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run is particularly important for a comparison of capital investment levels. The lack of 

any salvage value and depreciation will tend to cause investments to fall toward zero 

during the last couple of periods, since capacity investments made in those periods cannot  

recover costs of investments. We observe that when we consider the salvage value and 

account for (3.3% yearly) depreciation in capital, market prices on average through 

periods 1-4 decrease 13%  (relative to no salvage – no depreciation) with 3-player market 

and they decrease 8% with the 5-player market. When number of players increased from 

three to five, yearly average market price reduced 25% and yearly average price volatility 

decreased 31% in this run. 

 

Table 5a. Yearly price levels with 3 players (90% salvage value & depreciation) 
 
    Demand Growth   

Period Low (0.6%) Medium (0.9%) High (1.3%) 
0=4.1.04-05 (114.8, -, 114.8, 114.8) (114.8, -, 114.8, 114.8) (114.8, -, 114.8, 114.8) 
1=4.1.05-06 (83.8, 8.4, 89.7, 77.8) (83.9, 8.3, 89.8, 77.9) (84.0, 8.2, 89.8, 78.2) 
2=4.1.06-07 (83.6, 5.0, 89.9, 77.8) (84.0, 4.9, 90.3, 78.2) (84.6, 4.9, 90.8, 78.8) 
3=4.1.07-08 (84.7, 4.3, 91.3 , 78.2) (85.4, 4.3, 91.9, 79.0) (86.4, 4.2, 92.8, 80.0) 
4=4.1.08-09 (87.2, 4.2, 94.1, 79.5) (88.3, 4.1, 95.0, 80.9) (89.6, 3.9, 96.3, 82.8) 
      
                             ( Expected price, standard deviation, max price, min price) 
 
 
Table 5b. Yearly price levels with 5 players (90% salvage value & depreciation) 
 
    Demand Growth   

Period Low (0.6%) Medium (0.9%) High (1.3%) 
0=4.1.04-05 (79.8, -, 79.8, 79.8) (79.8, -, 79.8, 79.8) (79.8,  - , 79.8, 79.8) 
1=4.1.05-06 (64.2, 5.7, 68.2, 60.1) (64.2, 5.6, 68.2, 60.2) (64.3, 5.5, 68.3, 60.4) 
2=4.1.06-07 (64.0, 3.4, 68.3, 60.0) (64.3, 3.4, 68.6, 60.3) (64.6, 3.4, 70.0, 60.7) 
3=4.1.07-08 (64.9, 2.8, 69.5, 61.1) (65.4, 2.7, 70.1, 61.7) (66.0, 2.7, 70.8, 62.5) 
4=4.1.08-09  (66.9, 3.2, 72.6, 61.3) (67.7, 3.2, 73.3, 62.2) (68.8, 3.2, 74.3, 63.5) 
      
                             ( Expected price, standard deviation, max price, min price) 
 

In Figure 4, we draw the price evolution for three scenarios (out of sixteen) for the 

medium demand growth and 90% salvage value and capital depreciation for the 3-player 

market. In the figure, s1 refers to {up, up, up, up} scenario, s3 refers to {down, down, 

down, down} scenario, s2 refers to {up, down, down, down} scenario.  
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Price evolution for some scenarios
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              Figure 4: Some price trajectories ($/MWh) for ( , , ) (3, 0.009, 0.9)n ρ υ = .                                     

 

In Figure 5, we present histogram of the equilibrium prices for period 4, with 5-

players, medium demand growth, yearly capacity depreciation rate 1/30, and salvage 

value of 90% of installment cost, based on an interval width equal to $4/MWh yearly 

price. 
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       Figure 5: Histogram of equilibrium prices for ( , , , ) (5, 4, 0.009, 0.9)n t ρ υ =  

 

3.4   Connections with other approaches  

 A potential alternative to computation of the S-adapted open-loop equilibrium via 

stochastic programming is to compute a feedback equilibrium using Dynamic 

Programming. A natural state vector for such an exercise would be the demand state and 

the vector of capacities for the technologies for each of the players. For the sake of 
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definiteness in this discussion, consider the application of our model to the Ontario Power 

Market, in section 3.3. For the 5-player model, 4 of the players each have one production 

technology and the fifth player has 3 technologies. This yields a 7-dimensional capacity 

vector and an 8-dimensional state vector. If this game could be expressed as a finite time-

horizon, linear-quadratic (LQ) game then well-known recursive algorithms for 

computation of linear feedback equilibrium decision rules could be applied (e.g., see 

Kydland and Prescott (1977) and also Reynolds (1986)). However, an LQ formulation 

does not permit constraints on decisions (e.g., production bounded below by zero and 

above by capacity) nor does it provide a good approximation of capacity constrained 

costs. A quadratic payoff would imply that marginal production cost is linear in output 

for all output levels. This is a bad approximation of an increasing marginal cost curve that 

becomes vertical at output equal to capacity.  

 Another approach would be to discretize the state space by restricting capacity 

levels to belong to a finite set of r numbers. The DP approach would involve computation 

of a feedback equilibrium value function for each player for each possible state. The 

number of possible states in period t for the Power Market application is 2tr7 (2t is the 

number of demand states in t, r7 is the number possible capacity vectors). For example, if 

r=12 then there are over 570 million states in the final period (t=4), over 285 million 

possible states in the penultimate period (t=3), and so on.3 This illustrates the curse of 

dimensionality for a DP approach. Application of the DP approach to this seemingly 

modest-sized problem turns out to involve severe computational difficulties. 

 In defense of DP however, we should note that it allows one to conceptualize a 

richer set of strategies, namely, equilibrium in feedback strategies. The economics 

literature refers to this as a Markov perfect equilibrium (e.g., Ericson and Pakes (1995), 

Lockwood (1996)) or a subgame perfect equilibrium. A feedback strategy is conditioned 

not only on the time period and demand state, but also on a state vector that summarizes 

                                                           
3  Of course, if r is smaller the dimensionality is reduced. But a courser grid of capacity values may be an 
inferior approximation of the true state space. A discrete state space may also introduce new problems of 
multiple equilibria. Berry and Pakes (1993) utilize a probabilistic investment formulation that smoothes out 
discreteness for investment choices and avoids the multiple equilibria problem. However, this formulation 
does not eliminate the “curse of dimensionality”. 
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the historical decisions that are relevant for players’ current and future payoffs.4 Such a 

formulation allows one to consider incentives for strategic investment, since the 

investment decisions of any one player may influence later decisions of other players (see 

Reynolds (1986, 1987, 1991) for analyses of this type). Note that strategic incentives of 

this type are absent in the open-loop formulation.  Reynolds (1987) shows that the 

quantitative difference between feedback equilibria and open-loop equilibria is relatively 

small for simple dynamic models of production and investment.5 Moreover to date, 

equilibria of this type have not been computed for large-scale models, although as 

demonstrated in this paper, S-adapted open loop policies are computable using stochastic 

programming.  

 For reasons outlined above, we do not compute a subgame perfect equilibrium. 

However, results in this paper and prior papers suggest how subgame perfect equilibrium 

results would compare to results for the GES and GPS formulations of this paper.We show 

in Example 1 that a player’s payoff can be higher in a GES formulation than in a GPS 

(equivalently, open loop) formulation Next, Reynolds (1986,1987) shows for 

deterministic investment and production games, that players’ payoffs are lower in the 

subgame perfect equilibrium than in the open loop equilibrium. The reason is that a 

subgame perfect equilibrium introduces an additional strategic incentive that is not 

present in the open loop (or, GES) formulation; in a subgame perfect equilibrium, each 

player recognizes that extra investment now will preempt some future investment by 

rivals. These incentives lead to greater investment and production overall, and lower 

prices, in a subgame perfect equilibrium than in an open loop equilibrium. This strategic 

incentive to invest should also be present in a subgame perfect equilibrium formulation 

with demand uncertainty. These two comparisons, namely GES vs. open loop and open 

loop vs. subgame perfect, suggest that payoffs would be lower in a subgame perfect 

equilibrium than in a GES solution. 

 

                                                           
4 The concept of subgame perfect equilibrium is more general than feedback equilibrium. The set of 
subgame perfect equilibria may include equilibria in which firms behave collusively; collusion is enforced 
by threats of reversion to competitive behavior if deviation from collusion is observed. 
5 Also, see Deneckere and de Palma (1998) for a defense of using the open-loop concept in dynamic games. 



 

 

 

31 

4.  Conclusions 

 In this paper we have studied several alternative games under uncertainty.  These 

include Games with Probabilistic Scenarios (GPS), Games with Expected Scenarios 

(GES), and a Hybrid Game (HG).  The HG formulation provides the argument against 

GES, even though there are instances in which all players may be better off by choosing 

to play the GES over GPS.  Thus under uncertainty, it is plausible to consider the GPS 

formulation.  We also show that if all players are identical, and the probability of a higher 

inverse-demand curve either equals or exceeds that of a lower inverse-demand curve, 

then players can earn greater expected profits as volatility increases.  This result suggests 

that even in an increasingly volatile market, players may have an incentive to participate 

in the market.  Given the surge in uncertainty within certain markets (e.g., energy), this 

result appears to be reassuring.   

 Our approach, based on stochastic programming, provides a computationally 

realistic approach to oligopolistic games under uncertainty. The key to this presentation is 

the so-called scenario formulation which allows us to model the games through a finite 

number of scenarios, coordinated by the non-anticipativity constraints.  The same type of 

formulation holds for both two-stage, as well as multi-stage games, both of which are 

solvable using standard algorithms for linear complementarity problems (e.g. the PATH 

solver available on the NEOS server).  The Ontario power market application presented 

in this paper illustrates that this approach can address dynamic games that are clearly out 

of reach for dynamic programming, a common approach in the literature on dynamic 

games.  The theory associated with infinitely-many scenarios within the stochastic 

programming setting is currently under investigation, and some initial results are 

available in Higle and Sen (2004) and Casey and Sen (2004). 
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