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Abstract

We study a two-period duopoly game with capacity accumulation under demand uncertainty, pro-

duction and time-to-build constraints. These considerations are relevant in network industries such as

electricity markets and hot spot markets.We characterize and compare open-loop, Markov perfect and

closed-loop Nash equilibrium investments.
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1 Introduction

In many industries capacity investments are made under uncertainty. Uncertainty may stem from the nature
of production characteristics, demand, cost or macroeconomic conditions. Some uncertainties are industry
speci�c and the degree of uncertainty may vary from industry to industry. Production capacity investments
under uncertainty have been studied extensively in the literature. The recent studies revisit and extend the
early contributions to incorporate di�erent demand models and behavioral assumptions to study the new
capital intensive markets including, e.g., restructured electric power generation, natural gas transportation,
ethanol, and semiconductor (e.g., Chou et al. [1]). The main objectives of these articles are to provide
insights for equilibrium investment behavior. However, the capacity competition over time, in which capacity
is subject to a time-to-build constraint and �rms face demand uncertainties over time, has not been adequately
analyzed. (According to the empirical study by Koeva [2], time-to-build ranges from 13 to 86 months.) In
particular, how �rms would adjust their incremental capacity investments over time under di�erent behavioral
assumptions (precommitment versus no commitment, or open-loop versus Markov perfect or closed-loop) is
an important question to be investigated. For example, in the electricity production industry competing
power generation �rms can invest incrementally in some technologies under demand uncertainty either using
some precommitment policies or using some state-dependent policies.

We study a two-period duopoly game with capacity accumulation under demand uncertainty. Investment
is not productive instantly, and there is a lag between investment and production. We characterize and
compare open-loop, Markov perfect and closed-loop Nash equilibrium investments. There is a signi�cant
literature in deterministic dynamic games comparing Markov perfect and open-loop strategies, see e.g.,
Reynolds [3], Driskill and McCa�erty [4], Long et al. [5] and Figuières [6]. Few papers adopt a stochastic
dynamic game framework, but did not compare the di�erent equilibrium results (see, e.g., Haurie and Zaccour
[7], Genc et al. [8], Chevalier-Roignant et al. [9]). Besides game-theoretic analysis, there is a vast literature
examining capacity investments using real options framework (e.g., Li and Wang [10]).
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The contribution of this paper is twofold. First, we characterize and compare optimal capacity investment
strategies under the three equilibrium concepts (open-loop, closed-loop, and Markov perfect) in a dynamic
game. Second, we examine a richer model that incorporates demand uncertainty, capacity and time-to-build
constraints simultaneously. We show how equilibrium outcomes change as these constraints play a role in
equilibrium predictions.

The plan of the rest of the article is as follows. Section 2 introduces the model, and Section 3 states some
general results along with the key �ndings. Section 4 concludes the paper.

2 Model

To analyze the impact of the information structure on equilibrium decisions, we adopt the simplest possible
parsimonious model, that is, a two-period duopoly game in which �rms produce a homogeneous good. At
time t = 0 for a given demand and capacity state vector, �rms produce competitively and make capacity
investments simultaneously and non-cooperatively under demand uncertainty. The stochastic process we
consider is a random walk with two states- upstate and downstate. An investment made at time t = 0 will
become productive in the following period. After demand uncertainty is resolved, �rms make production
decisions simultaneously and independently at time t = 1.

There are two �rms {i,−i}, who compete over two periods t = 0, 1. In period 0, inverse demand is known
to be P0(Q) = 1−Q, with Q the total output of the two �rms. The stochastic inverse demand in period 1 is:

P1(Q) =
{

1 + ξ −Q with probability p
1− ξ −Q with probability 1− p (1)

The demand at initial period has two successors with 1u, 1d denoting demand shifting up or down.
Denote Ii0 the investment in the production capacity for player i. Assuming away obsolescence and taking
into account the one-period delay for investment to become productive, the capacity accumulation dynamics
is given by

Ki1 = Ki0 + Ii0. (2)

Each player must satisfy the production capacity constraint at each production node,

qit ≤ Kit, t = 0, 1. (3)

We adopt a quadratic investment cost function and a linear production cost,

Fi (Ii) = 1/2f I2
i , Ci (qi) = cqi,

where f > 0 and 0 < c < 1. Also 0 ≤ ξ < 1− c. Assuming pro�t maximization behavior, each player maxi-
mizes expected discounted payo� with a common discount factor δ ∈ (0, 1) subject to the above constraints.

What follows is the formal de�nition of information structures, S-adapted open-loop and perfect memory
closed-loop information, which we will employ in equilibrium predictions.

De�nition 1 S-adapted open-loop information: At any time each player's information set includes the cur-
rent calendar time, the current demand state, the distribution of future demand, and the initial values of
capacity states.

De�nition 2 Perfect memory closed-loop information: At any time each player's information set includes
the current calendar time, the current states involving demand and capacity states, the distribution of future
demand, and the history of the states.

We use the term S-adapted (sample adapted) to re�ect the fact that the game is stochastic and the demand
distribution is modeled by event tree. S-adapted equilibrium strategies in an open loop equilibrium allow
the decisions to be adapted to demand shock realization but not the capacity (investment) decision in the
previous period. Both S-adapted open-loop equilibrium (in short OLNE) and the perfect memory closed-loop
equilibrium (CLNE) are Nash equilibrium in investment and production strategies. The former is obtained
under the S-adapted open-loop information structure, and the latter is obtained under the perfect memory
closed-loop information structure. In between these information structures is the Markov perfect information
in which a player conditions his decision on the value of the current state only. This is the feedback rule that
considers the current stock of states, irrespective of initial conditions (see Basar and Olsder [11]).
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3 Results

We report some general results pertaining to production and investment decisions at any time and demand
state. We also show relationships between output and investment decisions. These results provide some
valuable insights for the characterization of open-loop, Markov perfect and closed-loop equilibria.

Consider production decisions at any time. Because of the lag between investment and production, the
investment decision is independent of quantity decision at the same period. Player i chooses production
quantity by solving the following pro�t maximization problem,

maxPt (Q) qit − Ci (qit) ,
s.t., 0 ≤ qit ≤ Kit.

The solution of the problem produces four equilibrium candidates: (i) The interior Cournot solutions,

qit = (1 + ξ̂ − c)/3 = q−it; or (ii) The corner solutions, qit = Kit, q−it = K−it; or (iii) The asymmetric
solution with player i producing at full capacity, qit = Kit and the rival player −i playing its best response
strategy q−it = (1 + ξ̂ − c − Kit)/2, where ξ̂ ∈ {0, ξ,−ξ}; or (iv) The asymmetric solution with player i

producing at the interior Cournot level, qit = (1 + ξ̂ − c−K−it)/2 and the rival player −i producing at the
capacity, q−it = K−it. The following lemma shows that the asymmetric solution is ruled out in a symmetric
game.

Lemma 1 At any time and demand state, whenever capacities of the players are symmetric, Nash equilibrium
outputs are unique and symmetric.

All proofs are in the Appendix.
The next lemma shows that it can never occur that a player's output in downstate 1d exceeds his pro-

duction in upstate 1u. Note that this result is independent of production capacities.

Lemma 2 In period 1, qi1d ≤ qi1u.

The following lemma states that if a player invests at period 0, then this player will produce at full
capacity in upstate.

Lemma 3 If Ii0 > 0, then player i produces at capacity in upstate, qi1u = Ki1.

Consider the simplest possible setting of rivalry investment decisions, where demand is known with cer-
tainty (ξ̃ = 0). We have the following result.

Proposition 1 In the absence of uncertainty, open-loop, Markov perfect and closed-loop Nash equilibrium
investments coincide.

The result holds because the closed-loop, Markov perfect and open-loop Nash equilibrium state vectors
at each stage coincide, and the rollback solution is identical to the forward solution. Alternatively, as the
investment cost is sunk for the second period and the e�ect of investment is to provide an upper bound
for the production level, the equilibria coincide. Note that this result holds for any given initial production
capacities. Further, as one can expect, it can be easily shown that total industry investment is lower than
the welfare-maximizing level.

Now consider stochastic demand (ξ̃ > 0). The interior Cournot outputs will be qc
0 = (1 − c)/3, qc

u =
(1 + ξ − c)/3, and qc

d = (1− ξ − c)/3 for time zero, upstate and downstate demand, resp. Depending on the
model parameter values, several interesting investment pro�les arise:

Case 1 : Ii0 = 0 and qi1d ≤ qi1u ≤ Ki1,

Case 2 : Ii0 > 0 and qi1d < qi1u = Ki1,

Case 3 : Ii0 > 0 and qi1d = qi1u = Ki1.
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Case 1 occurs when the player's initial capacity is high. Strict inequalities will hold when initial capacity
is greater than Cournot output in high demand (Ki0 > (1 + ξ − c)/3). Case 2 occurs (Proposition 2) when
the initial capacity Ki0 is large so that the capacity constraints do not always bind, but also low enough
that �rms have an incentive to invest in capacity ( Ii0 > 0). Case 3 occurs (Proposition 3) when the initial
capacity is low and total capacity is binding in both states in period 1.

Proposition 2 Assume Ki0 = K−i0 = K0, and initial capacity is high such that k′ < K0 < qc
u, where

k′ = qc
d(1 + δp/f)− 2δpξ/f . Then, for �rms i,−i = 1, 2, i 6= −i

1. Symmetric open-loop (OL), Markov perfect (MP) and closed-loop (CL) Nash equilibrium investments
are,

IOL
i0 =

δp (1 + ξ − c− 3Ki0)
f + 3δp

= IMP
i0 , ICL

i0 =
δp (1 + ξ − c− 4Ki0)

f + 4δp
.

2. Equilibrium quantities at time 1 are given by

qCL
i1u = KCL

i1 =
fKi0 + δp (1 + ξ − c)

f + 4δp
, qCL

i1d =
1− ξ − c

3
,

qOL
i1u = KOL

i1 =
fKi0 + δp (1 + ξ − c)

f + 3δp
= qMP

i1u , qOL
i1d =

1− ξ − c
3

= qMP
i1d .

3. Equilibrium pro�ts compare
πOL

i = πMP
i < πCL

i .

4. Asymmetric equilibrium in investment strategies is not possible.

Note that k′, the restriction on the lower bound of initial capacity, is chosen to restrict the equilibria so
that equilibrium investment levels are comparable under the di�erent information structures. Also, at the
chosen level of k′ we end up with Case 2 so that �rms will invest and the investment will be fully utilized
whenever the upstate demand unfolds. As shown in the proof of this proposition, there is a large lower bound
of initial capacity in which investment strategies satisfy the properties in Case 2. However, to be able to
compare the investment levels under OL and CL structures we make sure that these investment strategies are
well-de�ned in the same parameters region. Therefore, we consider the relevant region of initial capacities
(i.e., intersection of the lower bounds), which is the restricted region, so that investment expressions are
comparable.

Proposition 3 Assume Ki0 = K−i0 = K0, and initial capacity is low such that 0 < K0 < k′′, where
k′′ = qc

d − 2δpξ/f . Then, for �rms i,−i = 1, 2, i 6= −i

1. Symmetric open-loop, Markov perfect and closed-loop Nash equilibrium investments are,

IOL
i0 =

δ (1− ξ − c− 3Ki0 + 2pξ)
f + 3δ

= IMP
i0 , ICL

i0 =
δ (1− ξ − c− 4Ki0 + 2pξ)

f + 4δ
.

2. Equilibrium production quantities at time 1 are

qCL
i1u = qCL

i1d = KCL
i1 =

fKi0 + δ (1 + ξ − c+ 2pξ)
f + 4δ

,

qOL
i1u = qOL

i1d = qMP
i1u = qMP

i1d = KOL
i1 =

fKi0 + δ (1 + ξ − c+ 2pξ)
f + 3δ

= KMP
i1 .

3. Equilibrium pro�ts compare
πOL

i = πMP
i < πCL

i .

4. Asymmetric equilibrium in investment strategies is not possible.
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Proof. See the Appendix. �
Note that the upper bound of initial capacity k′′ ensures that we are analyzing Case 3 and the equilibria

under OL, MP and CL information structures are comparable.
Contrasting Propositions 2 and 3 with Proposition 1 con�rms the known conclusion that under uncertainty

the three information structures do not produce the same investments, see, e.g., Haurie et al. [12]. Further,
a simple comparison of the investment strategies in Proposition 2, as well as in Proposition 3, shows that
IOL
i0 = IMP

i0 > ICL
i0 , and, therefore, open-loop Nash equilibrium capacity per �rm exceeds its closed-loop

Nash equilibrium counterpart. Interestingly, open-loop equilibrium is subgame perfect, which stems from
the binding capacity constraints. Under the closed-loop structure �rms, a �rm's output in the upstate is
increasing in the rival �rm's investment. This creates collusive-like behavior in which when a �rm reduces its
investment the rival also decreases its investment. Hence closed-loop investment levels will be lower than the
open-loop counterparts. Under the OLNE a �rm's period zero investment does not have any strategic value
because it does not have an impact on its rival's period one output choice. Finally, under all information
structures there is no room for an asymmetric equilibrium in investments strategies.

Propositions 2 and 3 show that investment is a function of demand probabilities p. It can be easily shown
that investments are increasing in p. When p = 0 investments are zero in Proposition 2 . This implies that
if upstate demand is not likely to unfold, which happens when the available capacities exceed the Cournot
output in low demand, no investment occurs. For p = 0 investments are positive in Proposition 3 since they
will be used in low demand state as well. At the initial period investments are made to bene�t any future
demand state -low or high- because �rms start with installed capacities lower than the Cournot output in
down state.

It is easy to check that if both players do not invest in capacity (which happens when initial capacities
are enough to cover the upstate demand), then open-loop, Markov perfect and closed-loop outputs coincide
at each node. Consequently, individual pro�ts are the same under all information structures.

Proposition 4 Assume asymmetric initial capacities, Ki0 6= K−i0, and the capacities satisfy k < Ki0 <
qc
u < K−i0, where k = qc

d − δpξ/f . Then, the asymmetric OLNE, MPE and CLNE investments are given by

IOL
i0 =

δp[1 + ξ − c− 3Ki0]
2f + 3δp

, IMP
i0 = ICL

i0 =
δp[1 + ξ − c− 2Ki0]

2f + 2δp
, IOL

−i0 = 0 = ICL
−i0 = IMP

−i0

Further,

πOL
i < πCL

i = πMP
i ,

πOL
−i > πCL

−i = πMP
−i .

In this proposition, duopolists start with di�erent initial capacities and in equilibrium one duopolist makes
positive investment and the other does not. Facing a rival �rm with large capacity, a player will invest less
and realize lower pro�t in OLNE than in MPE (or CLNE). The MPE capacity for �rm i exceeds its OLNE.
Note that, player i produces at full capacity in the upstate and player −i produces less than his capacity.

In this asymmetric game, this proposition only deals with the case in which one player invests and the
other does not invest in equilibrium. The investing �rm's capacity will be binding in the upstate alone. There
are other possible asymmetric equilibria. For example, we could have characterized the equilibrium in which
the investing �rm's capacity would be binding in both states. However, the equilibrium characterization for
that case will be qualitatively the same as with Proposition 4. There are some other equilibrium types, but
for the sake of briefness we omit their characterizations.

4 Concluding Remarks

Although our setting is on purpose simple, there are several key notions behind the results. First one is the
uncertainty, which is a�ecting the number of states in each time. In the certainty case (Proposition 1), the
equilibrium investments coincide for all information structures. However, allowing uncertainty (in Proposition
2-4) generates di�erent market outcomes and equilibrium ranking. As the uncertainty (represented by ξ)
increases, product demand increases in the upstate, which creates incentives to invest in the earlier stage.
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Firms will invest and produce more at high prices and hence the expected pro�t will increase. This results
holds true under each equilibrium type.

The second key component is the capacity constraints. Depending on whether capacity constraints are
binding or not equilibrium outcomes multiply: we obtain equilibrium prices, investments and outputs for
interior and corner solutions, which covers the entire range of equilibria. In Proposition 2 capacity constraints
were binding only in the high demand scenario, in Proposition 3 they were binding in both high and low
demand situations. The status of the capacity constraints changes the pro�tability, market prices, and
investment levels for a given equilibrium concept, but not the equilibrium ranking across the information
structures.

Finally, the third driving force is the time-to-build constraint, which is a realistic feature that all �rms face.
Time-to-build constraint creates �here-and-now� investment decision which produces di�erent equilibrium
predictions than the instantaneous investment (no lead time) problems. For example, Reynolds [3] �nds
that MPE investments always exceed the OLNE investments when there is no lag between investment and
production. However, we show in Propositions 2-4 that time-to-build leads to a di�erent ranking of investment
pro�les.

An extension of the investment model to include more than two periods does not cause any conceptual
di�culty. However, the full characterization of the di�erent equilibria and their comparison will not be
feasible analytically as the number of possibilities increases exponentially. This comparison may still be
carried out numerically, that is, on examples of interest with speci�c parameter values.
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APPENDIX

Proof of Lemma 1

Cases emerge depending on whether the capacity is greater or lower than the unconstrained Cournot equi-
librium outputs. If K ≥ (1 + ξ − c)/3 and player i plays qi = K then the best response of player −i is
q−i = (1 + ξ − c − K)/2 by the pro�t maximization. In that case, P (Q) = (1 + ξ + c − K)/2, and the
pro�t of player i is πi = (1 + ξ − c −K)K/2. However, player i can do better, namely its best response to
player −i strategy q−i is q

∗
i = (1 + ξ − c+K)/4. Then, P ∗ (Q) = (1 + ξ + 3c+K)/2, and player i's pro�t is

π∗i = ((1+ξ−c+K)/4)2. Then, clearly, π∗i ≥ πi if and only if (1+ξ−c−3K)2 ≥ 0, but this inequality holds
because the production constraint must satisfy q∗i = (1+ξ−c+K)/4 ≤ K. Hence, asymmetric outcomes are
not part of the equilibrium. If K < (1 + ξ − c)/3 and player i plays K then the best response of player −i is
K, that is if the capacity K is lower than the symmetric Cournot level then the capacity constraints must be
binding. If capacity K is greater than the symmetric Cournot outputs then the solution is the interior one.
If K is equal to the Cournot outputs then the interior solution coincides with the corner solution. Therefore
depending on the capacity level, the equilibrium will be unique.

Alternatively, the proof can directly be derived from the general solution, where the asymmetric solution
for symmetric capacities immediately leads to a contradiction.

Proof of Lemma 2

There are three possible cases. Case 1: For a player the output in the upstate is greater than the output
in the downstate and for the other player the reverse applies. Case 2: Each player produces higher output
in the downstate. Case 3, which is the claim of the Lemma, that is, each player produces higher or equal
outputs in the upstate than in the downstate. We will show that �rst two cases are not possible.

The Lagrangian of the pro�t maximization problem is

Ll = Ps (Q) qls − Cl (qls) + λls(Kl − qls).

The �rst order conditions (FOC) lead to

Ps (Q) + P ′s (Q) qls − C ′l (qls)− λls = 0, s = 1u, 1d, l = i, −i.

Case 1: Assume the supposition qi1u > qi1d and q−i1u < q−i1d. Then the �rst inequality implies λi1d = 0 ≤
λi1u. Linearity of the inverse demand curve and the convexity of the cost function together with qi1u > qi1d

and λi1d = 0 ≤ λi1u imply that the last 3 terms in the LHS of the FOC are more negative for the upstate than
the downstate. So, by FOC we must have P1u (Q) > P1d (Q). On the other hand, the inequality q−i1u < q−i1d

implies that λ−i1d ≥ λ−i1u = 0. Linearity of the inverse demand curve, the convexity of the cost function
along with the inequalities q−i1u < q−i1d and λ−i1d ≥ λ−i1u = 0, lead to P1u (Q) < P1d (Q) by the FOC.
These inequalities of price ranking is obviously a contradiction. Therefore, it cannot happen that one player
produces higher output in the one state and the other produces higher output in the another state.

Case 2: Assume the supposition ql1u < ql1d, l = i,−i. Then clearly Q1u < Q1d must hold. Also
λl1d ≥ λl1u = 0 satis�es. By the properties of inverse demand and cost function and the supposition, the
FOC results in

P1u (Q) = −P ′1u (Q) ql1u + C ′l (ql1u)
< −P ′1d (Q) ql1d + C ′l (ql1d) ≤ P1d (Q) ,

which implies that, due to the linearity of the inverse demand, Q1u > Q1d which contradicts to Q1u < Q1d.
Therefore, it cannot happen that both players produce higher outputs in the downstate.

Therefore, the result that �rms do not produce lower outputs in the upstate than the downstate follows.
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Proof of Lemma 3

Consider the optimization problem of player i in period 0, with the two successor states 1u and 1d. It is
straightforward to verify that the OL Nash equilibrium (OLNE) conditions include

∂πi

∂Ii0
= −fIi0 + λi1u + λi1d = 0,

∂πi

∂qi1u
= δp [1 + ξ − 2qi1u − q−i1u − c]− λi1u = 0,

λi1u ≥ 0, Ki0 + Ii0 − qi1u ≥ 0,
0 = λi1u [Ki0 + Ii0 − qi1u] ,

∂πi

∂qi1d
= δ (1− p) [1− ξ − 2qi1d − q−i1d − c]− λi1d = 0,

λi1d ≥ 0, Ki0 + Ii0 − qi1d ≥ 0,
0 = λi1d [Ki0 + Ii0 − qi1d] .

For Ii0 > 0, we have λi1u + λi1d > 0. We have the following possibilities

λi1u > 0 and λi1d > 0,
λi1u > 0 and λi1d = 0,
λi1u = 0 and λi1d > 0.

The last possibility is excluded because only the condition qi1u ≤ Ki1 = qi1d implies this possibility. But this
condition contradicts to the Lemma 2 which proves that qi1u ≥ qi1d. Hence, in all events we have λi1u > 0,
and from complementarity conditions we must have qi1u = Ki0 + Ii0.

The proof of the result for the Markov perfect and closed-loop Nash equilibria are also similar. The
structure of the proof is available in the following propositions.

Proof of Proposition 1

In this deterministic case, there is only one state in each period and therefore there is no need to distinguish
between periods and states. Consider �rst the open-loop case. Player i maximizes

Li = qi0(1− qi0 − qj0)− cqi0 − f I2
i0/2 + δ[qi1(1− qi1 − q−i1)− cqi1]

+λi0(Ki0 − qi0) + λi1(Ki0 + Ii0 − qi1).

At time 0, the �rst order necessary conditions for production decisions (that are irrelevant of investment
decisions) might yield several possibilities due to capacity constraints. It might produce interior Cournot
solution: qi0 = (1 − c)/3 implying λi0 = 0. Or, it might lead to one interior one corner solution: qi0 =
(1 − K−i0 − c)/2 and q−i0 = K−i0, yielding λi0 = 0 and λ−i0 > 0. Or, both players are at the capacity:
ql0 = Kl0, l = i,−i implying λi0 ≥ 0 and λ−i0 ≥ 0.

At time 1, the production quantities are the same as the ones above, except the state variable at that
period might change with the possible capacity expansion made in earlier period. The optimum investment
must solve the �rst order necessary conditions, which imply Ii0 = λi1/f . Assuming positive investments by
both �rms means λi1 > 0, which in turn implies, Ki1 + Ii0 = qi1. The derivative of the objective function
with respect to qi1 results in λi1 = δ[1− 2qi1 − q−i1 − c]. Plugging this into the investment expression yields

fIi0 = δ[1− 2(Ki0 + Ii0)− (K−i0 + I−i0)− c],

The OLNE investment will satisfy this equality.
To characterize the Markov perfect equilibrium (MPE) investment levels we solve the problem backwards

and start from the �nal stage. At time 1, the value function is

vi1 = qi1(1− qi1 − q−i1)− cqi1 + λi1(Ki0 + Ii0 − qi1).

8



The complementarity condition is, λi1(Ki0 + Ii0 − qi1) = 0. Assuming that λi1 > 0, we obtain the corner
solution qi1 = Ki0 + Ii0. Next we plug this expression into the value function and write the value function
at time 0:

vi0 = qi0(1− qi0 − qj0)− cqi0 − fI2
i0/2 + δvi1(Ii0) + λi0(Ki0 − qi0).

Taking the derivative with respect to the investment results in, assuming positive investments by both �rms,

fIi0 = δ[1− 2(Ki0 + Ii0)− (K−i0 + I−i0)− c].

Clearly this expression is the same as the one obtained for OLNE. The computation of the closed-loop Nash
equilibrium (CLNE) will also be same as the Markov perfect equilibrium in this certainty setting. Hence,
investment levels coincide under all equilibrium concepts.

Proof of Proposition 2

First we characterize open-loop Nash equilibrium investments. We write the objective function to be maxi-
mized by �rms i = 1, 2,

zi0 = qi0(1− qi0 − q−i0)− cqi0 − f I2
i0/2 + δp[qi1u(1 + ξ − qi1u − q−i1u)− cqi1u]

+δ(1− p)[qi1d(1− ξ − qi1d − q−i1d)− cqi1d]
+λi0(K0 − qi0) + λi1u(K0 + Ii0 − qi1u) + λi1d(K0 + Ii0 − qi1d).

Under the assumption k′ < K0 < qc
u, where the lower bound of initial capacity k′ derived below, the initial

capacity is low and �rms undertake investment to increase the production capacity so as to meet the future
demand. Due to Lemma 2 the production constraint will bind in the upstate, but the total capacity will
be higher than the interior output in the downstate, and hence λi1u > λi1d = 0 will hold. It follows that
qi1u = Ki1u, qi1d = (1− c− ξ)/3. In period 1, capacity constraints only bind when demand is high, and the
investment has an impact in the high demand state.

Taking the derivative of the above objective function (zi0) with respect to the investment will yield to
Ii0 = (λi1u + λi1d)/f , and the multipliers are obtained by solving ∂zi0

∂qi1u
= 0,

λi1u = δp[1 + ξ − c− 2qi1u − q−i1u] = δp[1 + ξ − c− 3(K0 + Ii0)],

and λi1d = 0. Then, the OLNE strategy as a function of the model parameters is

IOL
i0 =

δp[1 + ξ − c− 3K0]
f + 3δp

, i = 1, 2.

Next we characterize Markov perfect equilibrium investments. Under the assumption k′ < K0 < qc
u,

investment only bene�ts in the upstate demand. At time 1 state 1u player i maximizes

viu = [qi1u(1 + ξ − qi1u − q−i1u)− cqi1u] + λi1u(Ki1u − qi1u),

where Ki1u = Ii0 +K0. The optimal output will satisfy qi1u = Ki1u because of the assumption. That is, at
time 1 optimality conditions are qi1u = Ii0 +K0 and q−i1u = I−i0 +K0.

At time 1 on state 1d player i maximizes

vid = [qi1d(1− ξ − qi1d − q−i1d)− cqi1d] + λi1d(Ki1d − qi1d).

The optimum output will satisfy qi1d < Kid because of the assumption, where Ki1d = Ki1u as up and down
states share the same root/history.

At initial node, player i maximizes

vi0 = qi0(1− qi0 − qj0)− cqi0 − f I2
i0/2 + δpwiu(Ki1u,K−i1u) + δ(1− p)wid(.)

+λi0(K0 − qi0),

where
wiu(Ki1u,K−i1u) = [(Ii0 +Ki0)(1 + ξ − Ii0 −K0 − I−i0 −K0 − c)]
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is the pro�t for player i at state 1u in period 1 when it has capacity of Ki1u = Ii0 +K0 and the rival has the
capacity of K−iu = I−i0 +K0. Also

wid(.) = qi1d(1− ξ − qi1d − q−i1d)− cqi1d

is the pro�t for player i at state 1d in period 1. The optimal investment must satisfy the �rst order condition

−fIi0 + pδ
∂wiu

∂Ki1u

∂Ki1u

∂Ii0
= 0,

or

−fIi0 + pδ[1 + ξ − c− q−i1u − 2Ki1u −Ki1u
∂K−i1u

∂Ii0
] = 0, (4)

−fI−i0 + pδ[1 + ξ − c− qi1u − 2K−i1u −K−i1u
∂Ki1u

∂I−i0
] = 0, (5)

for players i and -i respectively.
Plugging the outputs into (4) and (5) and driving ∂K−i1u

∂Ii0
= 0 = ∂Ki1u

∂I−i0
at time 1 and solving (4) and (5)

simultaneously we have

IMP
i0 =

δp[1 + ξ − c− 3K0]
f + 3δp

, i = 1, 2.

The equilibrium production quantities at time 1 will satisfy q1u = (Ki1u,K−i1u) at the upstate demand, and
q1d = ((1 − ξ − c)/3, (1 − ξ − c)/3) at the downstate demand. Since Markov perfect investment coincides
with the open-loop one, they will produce the identical outputs and pro�ts.

Next we characterize closed-loop Nash equilibrium (with memory) investments. Players still solve the
problem backwards as they do in the Markov perfect equilibrium. The only di�erence is the information
structure. Namely, players remember the past decisions and take them into account while making the
current decisions.

Under the assumption k′ < K0 < qc
u, investment only bene�ts the upstate demand. At time 1 state 1u

player i maximizes
viu = [qi1u(1 + ξ − qi1u − q−i1u)− cqi1u] + λi1u(Ki1u − qi1u),

where Ki1u = Ii0 +K0. The optimum output will satisfy qi1u = Ki1u because of the assumption.
At time 1 at state d player i maximizes

vid = [qi1d(1− ξ − qi1d − q−i1d)− cqi1d] + λi1d(Ki1u − qi1d).

The optimum output will satisfy qi1d < Ki1d , where Ki1d = Ki1u, because of the assumption.
At initial node, player i maximizes

vi0 = qi0(1− qi0 − qj0)− cqi0 − f I2
i0/2 + δpwiu(Ki1u,K−i1u) + δ(1− p)wid(.)

+λi0(K0 − qi0),

where wiu(Ki1u,K−i1u) is the pro�t for player i at state 1u in period 1 when it has capacity ofKi1u = Ii0+K0

and the rival has the capacity of K−iu = I−i0 + K0. Also wid(.) = qi1d(1 − ξ − qi1d − q−i1d) − cqi1d is the
pro�t for player i at state 1d in period 1. The optimal investment must satisfy

−fIi0 + pδ
∂wiu

∂Kiu

∂Kiu

∂Ii0
= 0,

or

−fIi0 + pδ[1 + ξ − c− q−i1u − 2Kiu −Kiu
∂K−i1u

∂Ii0
] = 0, (6)

−fI−i0 + pδ[1 + ξ − c− qi1u − 2K−iu −K−iu
∂Ki1u

∂I−i0
] = 0, (7)

for players i and -i respectively.
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At time 1 optimality conditions are qi1u = Ii0 + K0 and q−i1u = I−i0 + K0. At time 0 both players
can derive the optimality conditions (6) and (7). They observe that these expressions are symmetric and
at period 1 they will produce at the capacity. Therefore, the same investment level must solve (6) and (7)
simultaneously. Hence, period 1 outputs must be identical. That is, qi1u = Ii0 + K0 = q−i1u = I−i0 + K0.

And then, ∂K−i1u

∂Ii0
= 1 = ∂Ki1u

∂I−i0
must satisfy. Given these conditions, we solve (6) and (7) to obtain

ICL
i0 =

δp[1 + ξ − c− 4K0]
f + 4δp

, i = 1, 2.

The equilibrium production quantities at time 1 will satisfy q1u = (Ki1u,K−i1u) at the upstate demand, and
q1d = ((1− ξ − c)/3, (1− ξ − c)/3) at the downstate demand.

Mathematically, the di�erence between CLNE and MPE investment levels is that under the CLNE
∂K−i1u

∂Ii0
= 1 = ∂Ki1u

∂I−i0
must satisfy, however under the MPE ∂K−i1u

∂Ii0
= 0 = ∂Ki1u

∂I−i0
holds at time 1 which

generates the di�erence between the equilibrium predictions.
Next we obtain the lower bound of initial capacity, k′, that entails non-binding capacity at the downstate

demand by solving K0 + Ii0 > qc
d. When we insert IOL

i0 into this inequality, we obtain that K0 > qc
d−2δξp/f .

When we insert ICL
i0 into this inequality we obtain K0 > qc

d(1+δp/f)−2δξp/f . To make the investment levels
comparable in these regions we take the maximum of these bounds;max[qc

d − 2δξp/f, qc
d(1 + δp/f)− 2δξp/f ] =

k′.
We now show that πCL

i > πOL
i . The CLNE and OLNE pro�ts at initial node and node d in period 1 are

clearly the same. Therefore, we need to compare the pro�ts at node u in period 1. The di�erence in pro�ts
is given by

πOL
i − πCL

i = A+B,

where, dropping the player index,

A = −f(
(
IOL

)2 −
(
ICL

)2
)/2 = −f(IOL − ICL)(IOL + ICL)/2,

B = δp[(K0 + IOL)(1 + ξ − 2(K0 + IOL)− c)
−(K0 + ICL)(1 + ξ − 2(K0 + ICL)− c)].

Because IOL > ICL, A is negative. If the sign of B is negative, then we are done. Otherwise, we need to
determine the sign of |A| −B. We have

B = δp[(K0 + IOL)(1 + ξ − 2(K0 + IOL)− c)
−(K0 + ICL)(1 + ξ − 2(K0 + ICL)− c)]

= δp[−2K0I
OL + 2K0I

CL + IOL(1 + ξ − 2(K0 + IOL)− c)
−ICL(1 + ξ − 2(K0 + ICL)− c)]

= δp[2K0(ICL − IOL) + (1 + ξ − 2K0 − c)(IOL − ICL)− 2
(
IOL

)2
+ 2

(
ICL

)2
]

= δp[(IOL − ICL)(1 + ξ − 4K0 − c)− 2(IOL − ICL)(IOL + ICL)]
= δp[(IOL − ICL)(1 + ξ − c− 4K0 − 2(IOL + ICL))].

In the expression πOL
i − πCL

i = A+B, we will show that |A| > B. Indeed,

|A| −B = (IOL − ICL)[
f(IOL + ICL)

2
− δp(1 + ξ − c− 4K0 − 2(IOL + ICL))]

= (IOL − ICL)[(IOL + ICL)(2δp+ f/2)− δp(1 + ξ − c− 4K0)]
= (IOL − ICL)[(IOL + ICL)(2δp+ f/2)− ICL(f + 4δp)]
= (IOL − ICL)[(IOL(2δp+ f/2)− ICL(2δp+ f/2)]
= (IOL − ICL)2(2δp+ f/2) > 0.

Hence, πOL
i − πCL

i < 0.
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Next we show that asymmetric equilibrium in investment strategies is not possible. That is, since Ki0 =
K0 = K−i0 and investment is positive ICL

i0 = ICL
−i0, and I

OL
i0 = IOL

−i0 must hold. To see this in the OLNE we
look at the investment expression, Ii0 = λi1u/f , where

λi1u = δp[1 + ξ − 2qi1u − q−i1u] = δp[1 + ξ − c− 2(K0 + Ii0)− (K0 + I−i0)].

Then, we will have

IOL
i0 =

δp[1 + ξ − c− 3K0 − 2IOL
i0 − IOL

−i0]
f

,

IOL
−i0 =

δp[1 + ξ − c− 3K0 − 2IOL
−i0 − IOL

i0 ]
f

,

which are clearly symmetric expressions and the only solution is IOL
i0 = IOL

−i0.
In the CLNE at initial node player i maximizes

vi0 = v − f I2
i0/2 + δp[(K0 + Ii0)(1 + ξ − c− 2K0 − Ii0 − I−i0)],

where v is the portion of the pro�t not involving the investment term. Taking the derivative of this expression
with respect to Ii0 and equating it to zero yield

ICL
i0 =

δp[1 + ξ − c− 3K0 − ICL
−i0]

f + 2δp
.

Similarly, for player j we obtain

ICL
−i0 =

δp[1 + d− c− 3K0 − ICL
i0 ]

f + 2δp
.

Clearly these best response functions admit a unique symmetric solution. Hence ICL
i0 = ICL

−i0.

Proof of Proposition 3

The proof is similar to the proof of Proposition 2 and is omitted. But we will derive the lower bound of initial
capacity, k′′, that entails binding capacity at both upstate demand and the downstate demand by solving
Ki0 + Ii0 < qc

d. When we insert IOL
i0 into this inequality, we obtain that Ki0 < qc

d − 2δξp/f . When we insert
ICL
i0 into this inequality we obtain Ki0 < qc

d(1 + δ/f) − 2δξp/f . To make the investment levels comparable
in these regions we take the minimum of these bounds;

min[qc
d − 2δξp/f, qc

d(1 + δ/f)− 2δξp/f ] = k′′.

Proof of Proposition 4

We write the objective function to be maximized by �rm i:

vi0 = qi0(1− qi0 − q−i0)− cqi0 − f I2
i0/2 + δp[qi1u(1 + ξ − qi1u − q−i1u)− cqi1u] +

δ(1− p)[qi1d(1− ξ − qi1d − q−i1d)− cqi1d]
+λi0(Ki0 − qi0) + λi1u(Ki0 + Ii0 − qi1u) + λi1d(Ki0 + Ii0 − qi1d).

Under the assumption k < Ki0 < qc
u < K−i0, in which the expression for k is derived below, the initial

capacity for player i is low and it has to invest given the larger market share of his competitor −i. The
addition of new investment will facilitate 100% capacity utilization to the �rm i once high demand scenario
unfolds. The �rm i will use some of its investment in the production process if it faces low demand in the
market. However, due to the abundance of its initial production capacity the rival �rm−i will opt out of
investing.

First we characterize open-loop investment strategy. We optimize the above objective function and
obtain that Ii0 = λi1/f , and λi1 = δp[1 + ξ − c − 2qi1u − q−i1u)], where qi1u = Ki0 + Ii0, and q−i1u =

(1 + ξ − c−Ki0 − Ii0)/2. Then the OLNE investment will be equal to IOL
i0 =

pδ[1 + ξ − c− 3Ki0]
2f + 3pδ

.
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Next we characterize Markov perfect equilibrium investments. At the upstate demand qi1u = Ki0+Ii0, and
q−i1u = (1+ξ−c−Ki0−Ii0)/2 will hold. At the downstate demand, we have qi1d = (1−ξ−c)/3 = q−i1d. We
plug these expressions into the respective objective function and maximize with respect to Ii0 for �rm i. The

Markov perfect equilibrium investment strategy will be equal to IMP
i0 =

pδ[1 + ξ − c− 2Ki0]
2f + 2pδ

. The closed-

loop equilibrium investment level will be identical to the Markov perfect investment, because ∂q−i1u

∂Ii0
= −1/2,

∂qi1u

∂Ii0
= 1, and ∂qi1u

∂I−i0
= 0. Clearly, ICL

i0 = IMP
i0 > IOL

i0 holds.

We derive the lower bound of initial capacity, k, that entails binding capacity at the upstate demand for
�rm i by solving Ki0 + Ii0 > qc

d. When we insert IOL
i0 into this inequality, we obtain that Ki0 > qc

d − δξp/f .
When we insert ICL

i0 into this inequality we obtain Ki0 > qc
d(1 − δp/2f) − δξp/f . To make the investment

levels comparable for �rm i under both equilibrium concepts, we take the maximum of these bounds;

k = max[qc
d − δξp/f, qc

d(1− δp/2f)− δξp/f ] = qc
d − δξp/f.

We now show that πCL
i > πOL

i . We have

πCL
i = Π− f

(
ICL
i0

)2
/2 + δp(Ki0 + ICL

i0 )(1 + ξ − (Ki0 + ICL
i0 )

−δp(1 + ξ − c−Ki0 − ICL
i0 )/2− c),

πOL
i = Π− f

(
IOL
i0

)2
/2 + δp(Ki0 + IOL

i0 )(1 + ξ − (Ki0 + IOL
i0 )

−δp(1 + ξ − c−Ki0 − IOL
i0 )/2− c)],

where Π is the pro�t term involving initial node and node d in period 1. The pro�t di�erence is thus given
by

πOL
i − πCL

i = −f(
(
IOL

)2 −
(
ICL

)2
)/2 + δp[(K0 + IOL)(1 + ξ − (K0 + IOL)− c)

−(K0 + ICL)(1 + ξ − (K0 + ICL)− c)]/2.

Let

A = −f(
(
IOL

)2 −
(
ICL

)2
)/2,

B =
δp

2
[(K0 + IOL)(1 + ξ − (K0 + IOL)− c)− (K0 + ICL)(1 + ξ − (K0 + ICL)− c)].

A is positive because (IOL − ICL)(IOL + ICL) < 0 because IOL < ICL. It is easy to check that B reduces
to

B = δp[(IOL − ICL)(1 + ξ − c− 2K0 − (IOL + ICL))].

Now, note that

πOL
i − πCL

i = A+B,

= (IMP − IOL)(IOL − ICL)(δp/2 + f/2),

which is negative, and hence πOL
i < πCL

i .
We next show that πCL

−i < πOL
−i for player −i. Similar to the pro�t di�erence for player i, the pro�t

di�erence for player −i under both equilibria boils downs to

πOL
−i − πCL

−i = δp(ICL − IOL)(2 + 2ξ − 2c− 2K0 + ICL − IOL)/4.

Note that the investment levels ICL, IOLare the investments made by player i. The di�erence is positive
because both the �rst term and the second term on the right hand side are positive.
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