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Abstract. A goal of this paper is to compare results for discriminatory auctions to results for 

uniform-price auctions when suppliers have capacity constraints. We have a pretty good 

understanding of what equilibrium results look like for the uniform-price auctions. But an 

unresolved problem is what happens when a discriminative auction is run and suppliers have 

capacity constraints. We formulate a supply function equilibrium (SFE) model in continuous 

offer schedules with inelastic, time varying demand and with single step marginal cost function 

to compare two auction institutions in the presence of capacity constraints. We show that 

payments made to the suppliers in the unique equilibrium of the discriminatory auction can be 

less than the payments in the uniform-price auction, depending on which uniform-price auction 

equilibrium is selected. For the high demand and/or low excess capacity cases we also 

characterize mixed strategy supply function equilibrium under the discriminatory auction. 
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1. Introduction 

The discriminatory or pay-as-bid auction institution was adopted by the British 

Regulatory Authority in the England and Wales wholesale electricity market in March 2001. In 

some US electric power markets (e.g., California power market) similar discussions are being 

held for changing the auction format from uniform to discriminatory pricing with the supposition 

that the discriminatory auction might achieve more efficient outcomes. In these environments, 

which auction institution yields higher profits for sellers, or lower average prices for buyers still 

remain open questions. Efficiency results and welfare rankings of these auctions in the electricity 

markets are being examined by various researchers such as Fabra, von der Fehr and Harbord 

(Ref. 1), Federico and Rahman (Ref. 2), Rassenti et al. (Ref. 3), Fabra (Ref. 4), Holmberg (Ref. 

5), and Son, Baldick, Lee and Siddiqi (Ref. 6) under various assumptions.  

A goal of this paper is to compare results for discriminatory auctions to results for 

uniform-price auctions when suppliers have capacity constraints. Take the case of constant 

marginal cost up to capacity, for example. We have a pretty good understanding of what 

equilibrium results look like for the uniform-price auctions. But an unresolved problem is what 

happens when a discriminative auction is run and suppliers have capacity constraints.  

Fabra, von der Fehr and Harbord (Ref. 1) article is particularly important and is closely 

related to the research reported here. Most of the analysis of Fabra et al. is based on the 

assumption that bids are “short-lived” and are discrete step supply offers. However, in some 

markets suppliers can submit what amount to continuous, piece-wise linear, positively-sloped 

supply functions with quantity choices that determine the “elbow points” [see e.g., Wolfram’s 

(Ref. 7) description of the England and Wales auction in the early 1990’s]. Strategies of this type 

are also described by Hortacsu and Puller (Ref. 8) for the Texas electricity balancing market.  

Fabra et al.’s analysis and conclusions about the relative utility of discriminatory versus uniform-
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price electricity auctions are relevant and valuable in markets characterized by “short-lived” bids 

and rules requiring discrete supply functions. However, continuous supply function equilibrium 

(SFE) outcomes are quite different in markets characterized by “long-lived” bids. Genc and 

Reynolds (Ref. 9) developed a continuous SFE model that proves the existence of multiple pure 

strategy equilibria under the uniform-price auction institution in markets of this type.  This 

stands in marked contrast to Fabra et al. step function approach which, for example, finds no 

pure strategy equilibrium in a parameter region of considerable empirical interest.  

The model presented in this paper differs from the current literature in many ways. To see 

the differences, I explain closely related papers in detail. Federico and Rahman (Ref. 2) compare 

the two auction formats for two extreme cases: perfect competition and monopoly market 

structures. Under complete information over costs and fixed-perfectly-inelastic demand, they 

find that these two auctions result in the same prices and payoffs. However these results change 

if demand is inelastic and uncertain. Rassenti et al. (Ref. 3) experimentally analyze market 

outcomes of the discriminatory and uniform auctions. Each seller has multiple technologies with 

fixed capacities and submits step function offer schedule to the market. They find that changing 

auction format from uniform to discriminatory leads to significant electricity price increases in 

the off-peak and shoulder periods. They also find that the price variability from trading period to 

trading period is lower under the discriminatory auction than under the uniform-price auction 

when there is a greater excess capacity during the peak period. Wolfram (Ref. 10) conjectures in 

favor of the uniform-price auction in the England Wales Electricity Pool. Kahn et al. (Ref. 11) 

reject the idea of switching to the discriminatory auction, and claim that the discriminatory 

auction may cause inefficiencies, because generators will no longer bid at their marginal costs, 

and the tacit collusion that exists within the uniform auction may persist in the discriminatory 

auction. Evans and Green (Ref. 12) report that after shifting the auction format to discriminatory 

pricing wholesale electricity prices have decreased in England and Wales. However, Bower (Ref. 
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13) and Newbery (Ref. 14) argue that this decrease is due to the asset divestitures, increase in 

imports and excess market capacity.  

The other related research is the Holmberg (Ref. 5) paper, which is a valuable 

contribution. Although there are many differences between his paper and this paper, some of 

Holmberg results could be viewed as complementary to my results, since they deal with a 

situation “capacity shortage” with positive probability. Holmberg compares the auction formats 

using completely inelastic demand. He assumes continuous marginal costs and derives SFE with 

the condition that demand exceeds total available industry capacity with positive probability. He 

claims that pure strategy equilibrium may not exist in the discriminatory auction, if demand has 

an increasing hazard rate and the marginal costs are constant, and concludes that average prices 

are weakly lower in the discriminatory auction. However, he does not deal with characterization 

of mixed strategy equilibrium in the discriminatory auction. Anwar (Ref. 15) also compares the 

discriminatory and uniform-price auctions. He studies equilibria in multi-unit common value 

auction model that sometimes provides a positive residual market demand to suppliers. He 

considers discrete step supply offers, and assumes uncertain demand. Each firm has the same 

constant marginal cost up to capacity. He shows that when demand is high and firms face some 

residual demand, the uniform auction leads to higher prices than the discriminatory auction. 

Fabra, von der Fehr and Harbord (Ref. 1) analyze a game-theoretic model in which firms with 

asymmetric capacities and costs submit discrete unit offer schedules to the auctioneer. Most of 

their analysis assumes a completely inelastic demand with a fixed market reserve price, constant 

marginal cost of production, and production capacity constraints. For the uncertain demand and 

perfectly symmetric case, they find that expected payments to suppliers are the same for both 

auctions. They also find that for low demand realizations, equilibrium is both unique and 

identical; the equilibrium is bidding at the marginal cost of the inefficient supplier for the two 

auction formats. For the asymmetric duopoly case, in the discriminatory auction they find that 
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there is no pure strategy equilibrium but only in mixed strategies. Son, Baldick, Lee and Siddiqi 

(Ref. 6) compare performance of two strategic players, one is with large capacity the other is 

with small capacity, under both auction formats in a short term electricity market game. Players 

bid energy blocks and face inelastic or elastic demand in the auction. They show that contrary to 

the ‘revenue equivalence theorem’ players’ expected total revenues are higher under uniform 

pricing than under the pay-as- bid pricing. They simulate the model results and compute the 

mixed strategy equilibrium under the discriminatory auction by applying the Lemke and Hawson 

algorithm, and discuss the likely effects of transmission constraints and multiple players on their 

findings.   

 In the paper I extend the SFE approach presented by Genc and Reynolds (Ref. 9) to 

compare discriminatory versus uniform-price electricity auctions. I assume that demand is time 

dependent (equivalently, stochastic) and is perfectly inelastic up to a price cap. I also assume that 

total industry capacity is greater than or equal to the peak demand. I compare the two auction 

formats when each firm’s marginal cost of production is constant up to its production capacity. I 

consider symmetric (and asymmetric, whenever possible) Nash equilibrium in continuous supply 

function strategies in oligopoly. In this basic model, I find that in the discriminatory auction, the 

optimal equilibrium supply function is unique and suppliers bid competitively. However, in the 

uniform-price auction there is a continuum of equilibria as in other SFE models (such as Baldick 

and Hogan (Ref. 16), Day, Hobbs and Pang (Ref. 17), Anderson and Philpott (Ref. 18), 

Klemperer and Meyer (Ref. 19)) in which equilibrium prices range from marginal cost to the 

price cap. Therefore, each player’s profit in the uniform auction is always weakly greater than 

the profit in the discriminatory auction at any time during the trading period. I also find that in 

the single-step marginal cost case, the functional form of the demand is irrelevant to the 

equilibrium strategies in both auction institutions. These results are consistent with the work of 

Back and Zender (Ref. 20), Wang and Zender (Ref. 21). 
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 In addition this paper makes the following contributions. First, our findings are applicable 

to wholesale electricity auctions that are conducted under both “long-lived” and “short-lived” 

auction rules (see Section 2). Second, we consider the effects of capacity constraints and pivotal 

suppliers. We demonstrate that there is no pure strategy equilibrium in the discriminatory 

auction; however equilibrium strategies in the uniform-price auction are in pure strategies and 

multiple. By the pivotal suppliers analysis Genc and Reynolds (Ref. 9) show that some of the 

proposed SFE in the literature are not equilibrium under the uniform-price auction. In the current 

paper, I show that this result holds even under the discriminatory auction (for example, Wang 

and Zender type of equilibria can be ruled out). Third, in the asymmetric capacity model, for the 

high demand and/or low excess capacity cases we also characterize the mixed strategy Nash 

equilibrium in supply functions under the discriminatory auction. Fourth, given that bidding rules 

as well as auction formats are market design issues, we discuss that as a market policy the 

auctioneer should promote continuous supply function bidding. This policy would be useful for 

both the auctioneer and the suppliers especially for equilibrium predictions, since the step 

function bidding predicts mixed strategy equilibrium which is hard to compute and undesirable 

from the operational point of view (see Son et al. (Ref. 6)).  

2. A Symmetric Supply Function Equilibrium Model 

Let 2n ≥  be the number of suppliers and ( ) 1N t t= −  be the time dependent and perfectly 

inelastic market demand (load duration curve) up to some exogenous choke price p , where 

[0,1]t∈  is time in a trading period1. The deterministic variation in demand over time is 

mathematically equivalent to Klemperer and Meyer’s (Ref. 19) model of uncertain demand with 

bounded variation. For this load function the corresponding stochastic demand would be 

1( ) 1 ( )G Q N Q−= −  in which load quantity Q has support [0,1] . Let 0iK >  be capacity for firm i, 

                                                 
1 Demand changes over periods in a predictable way are also used by several authors including Anderson and Xu 
(Ref. 22), and Newbery (Ref. 23).  
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and assume that (0)ii
K K N= ≥∑ , that is the total industry capacity can meet the peak load. 

Also let ( ( ( )))iz s p t  be piece-wise continuous marginal cost function, where ( )is p  is firm i’s 

supply function. Each supplier i is required to submit a supply function prior to the realization of 

the load to maximize his profit; given that rivals’ supply functions are fixed. Market clears at the 

lowest price that equates aggregate supply function to demand. Each firm is paid at that price for 

all capacity offers in the uniform-price auction. Each firm is paid at its bid price for the quantities 

supplied in the discriminatory auction. In case of excess supply at the clearing price, we assume 

a pro-rata on the margin rule for allocating excess supply (see Genc and Reynolds (Ref. 9)). If 

there is excess demand we assume there is no trade in that period.  

Let (1)p , (0)p  be prices at times 1 and 0, respectively. Let ( ) 1 ( )ii
T p s p= −∑  be the 

time at which price p would clear the market, and β  be the auction format parameter. 

Specifically let 1β =  refer to the uniform auction, and 0β =  refer to the discriminatory auction.  

I assume players are symmetric, and I characterize pure strategy symmetric SFE. (Asymmetric 

equilibrium in mixed strategies with asymmetric players is considered in Section 3.) I assume 

that each supplier has a constant marginal cost of production up to capacity, that is ( ( ))z s p c= ,  

where 0 c p≤ < . Note that our model could be applied to two different types of auction rules: 

long-lived and short-lived auctions that have been conducted in wholesale electricity markets. 

 

Auction with long-lived bids: Each supplier must submit a single supply function that is binding 

for an entire day. Baldick and Hogan (Ref. 16, in their section 4.2) refer to this as auction rules 

requiring consistency of bids over the time horizon. Suppliers have a common understanding of 

what the load will be for each period (e.g., ¼ hour) of the day, but they cannot submit different 

supply functions for different (¼ hour) periods. The auctioneer determines a clearing price for 

each (¼ hour) period, and each supplier is obligated to produce up to their supply quantity at the 
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clearing price for each ¼ hour) period. The load function N(t) can be interpreted as a continuous 

approximation to the 96 load quantities for ¼ hour periods, ordered from highest to lowest. 

Auction with short-lived bids: Suppliers are permitted to submit a supply function for each (¼ 

hour) period. The stochastic load interpretation of our model would be applicable if suppliers 

faced some uncertainty about the load quantity for these (¼ hour) periods at the time they submit 

their supply functions. There would be a different load ratio (i.e., ratio of minimum possible load 

to maximum possible load) for each (¼ hour) period.  

           Profit maximization problem of a firm in both auction formats can be formulated by using 

several methods, below we use a specific one. The other methods, such as the one in Wang and 

Zender (Ref. 21), lead to the same SFE conditions. Analogous to the method described in 

Rudkevich (Ref. 24), assume that for each time period  t, and for each increment of capacity 

( )ds p offered to the market at the prices range from p to p dp+ , a firm is paid the bid price p 

and a price that is proportion of the market price and the bid price. Then the infinitesimal 

revenue flow will be, ( , ) [ ( ( ) )] ( )dr t p p P t p ds pβ= + − . Hence, the time t revenue for a firm is, 

( )

(1)

( ) ( (1))[ (1) ( ( ) (1))] [ ( ( ) )] ( )
P t

P

r t s p p P t p x P t x ds xβ β= + − + + −∫ . Subtracting time t cost and 

integrating time t profit over total trading period (i.e., [0,1]) will result in total profit. After some 

algebraic manipulations (by using several integration by parts) one can obtain the total profit for 

a firm during the trading period: 
(0) (0)

(1) (1)

(.) ( (.)) ( ) ( ) (1 ) ( ) ( )
p p

p p

p z s p T p dp T p s p dpπ β′= − − − −∫ ∫ .  

Denote rivals’ total supply q(p), then  the firm’s optimization problem is  

min( (.))
. . ( ) ,

( ) ( ) ( ) ,
( (1)) 1 , ( (0)) 0, ( ) 0.

s t ds dp u p
q p s p N t
T p T p u p

π−
=

+ =
= = ≥
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where the supplier can only choose a price at some time t indirectly, via their choice of supply 

function. 

Lagrangian:

(.) ( ) ( ) ( ) (1 ) ( ) ( ) ( )[ ( ) ( )] ( )[ ( ) ( ) ( )]L p z s p T p T p s p p s p u p p q p s p N tβ ψ λ′ ′= − + − + − + + −  

Terminal function and necessary conditions are as follows. 

Terminal function: (.) ( (1)) ( (0))l s p s pµ η= − + . 

Lagrange-Euler equations: d L L
dp s s

∂ ∂
=
′∂ ∂

,   d L L
dp T T

∂ ∂
=
′∂ ∂

. 

Pontryagin optimality principle:  0min (.)uL L≥= . 

Transversality conditions: 
(1) ( (1))p p

L l
s s p=

∂ ∂
=

′∂ ∂
,  

(0) ( (0))p p

L l
s s p=

∂ ∂
= −

′∂ ∂
. 

Complementarity conditions: ( (1)) 0s p µ = , 0µ ≥ , ( (0)) 0s p η = , 0η ≥ . 

After solving Lagrange-Euler equations and Pontryagin principle, and rearranging terms we 

obtain the equation  

                     ( ) ( ) ( ) (1 ) ( ) ( )[( ) ( ) (1 ) ( )]s p p z s p s p N t p z T p T pβ β′ ′ ′+ − = − + − + −                  (1) 

When 1β =  and players are symmetric, for any N(t), we obtain  ( )( )
( 1)( )

s ps p
n p z

′ =
− −

, (since 

( ) ( ) ( )T p N t s p n′ ′ ′= ). When 0β = and players are symmetric and ( ) 1N t t= − , then  (1) results 

in 1 ( )( )
( 1)( )

s p ns p
n p z
−′ =
− −

. Therefore, we obtain the following proposition.   

 

 

Proposition 2.1:  Symmetric equilibrium supply functions must satisfy the following conditions:  

For the uniform-price auction   ( 1)( ( ) ( / ))( )uni
n p Q z Q np Q

Q
− −′ =           (2),   
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for the discriminatory auction  ( 1)( ( ) ( / ))( )
(1 )disc

n p Q z Q np Q
n Q

− −′ =
−

          (3), 

where Q is the industry supply.  

Proposition 2.2: For symmetric and constant marginal cost case (and non-binding capacity 

constraints), SFE is unique and the equilibrium market price is equal to the marginal cost of 

production in the discriminatory auction and SFE is multiple and the range of equilibrium prices 

is in between marginal cost and price cap in the uniform-price auction. 

Proof: In the case of ( / )z Q n c= , that is the marginal cost of production is constant, where 

(0,1)Q∈ , the solution of (2) satisfies, with the initial condition ( (0)) (0)uni unip N p≡ ,  

   
1/( 1)

1( )
(0)

n

uni
uni

uni

p cs p
n p c

−
 −

=  − 
              (4). 

This is the commonly studied uniform-price auction SFE in the literature. In (4) a firm’s 

equilibrium supply function is indexed by the initial price, (0) ( , ]unip c p∈ , and (4) does not 

violate the capacity constraints. (4) can also be written in as inverse industry equilibrium supply 

function,   

                      1( ) ( (0) ) n
uni unip Q c p c Q −= + −         (5).  

For the discriminatory auction the solution of (3) yields, 

1 1/ 1/
0

0

( 1)( ) ( 1) [ ( 1) ]
Q

n n
disc

np Q Q a c x dx
n

− + −−
= − + −∫ , where 0a  is an integration constant. This 

equation can also be written as 1 1/
1( ) ( 1) n

discp Q c a Q − += + − , where 1a  is another constant. For 

1 0a = , ( )discp Q c= . For 1 0a >  as 1Q → , ( )discp Q →∞ . For 1 0a <  as 1Q → , ( )discp Q →−∞ . 

Hence there is only one economically plausible solution, which is  

                       ( )discp Q c=                                   (6).  
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One can also show that this is the only unique solution by using the initial condition 

( (1) 0)discp N c= =   2.  

Note that if the initial price at time 1 was c εm , where 0ε ≥  then 1 1/( ) (1 ) n
discp Q c Qε − += −m . 

For a fixed ε  as 1Q → , ( )discp Q → ∞m , hence 0ε =  must hold.     �  

            Multiplicity of the equilibria in the uniform auction stems from the fact that there are 

multiple functions that pass through the profit maximizing points. Bids that are always 

inframarginal are irrelevant to determine equilibrium payoffs.  

Corollary 2.1: In the symmetric firms with constant marginal cost case, each player’s profit in 

the uniform auction is weakly greater than the profit in the discriminatory auction at any time 

during the trading period.  

            This corollary is a direct result of the Proposition 2.2. Because in the uniform auction, the 

market price is always greater or equal to the marginal cost of production, hence price-cost 

markup is greater than or equal to zero, and players submit non-negative and non-decreasing 

supply functions. Whereas in the discriminatory auction, price-cost markup is always equal to 

zero, no matter what proper supply functions are submitted profit for a firm becomes zero. 

Intuitively, Bertrand type equilibrium prevails because marginal cost is constant, i.e., 

independent of the level of output. 

 It appears that equilibrium supply functions are independent of demand functional form 

for both auction formats in the single-step marginal cost case, as long as demand is a 

                                                 
2 If, as in my formulation, total capacity is greater than or equal to max load, then a solution to the 

differential equation (3) must have ( 1) (1/ )p Q z n= = ; that is, the boundary price associated with the max load 
must equal the marginal cost (mc). When this price condition is satisfied, ( 1)p Q′ =  is equal to zero/zero; but using 
l’Hopital’s rule one can show that ( 1) (1/ ) /( (2 1))p Q z n n n′ ′= = − . A boundary price in excess of marginal cost 
yields a situation in which ( 1)p Q′ = is equal to a positive number divided by zero, which is undefined. This 
discussion explains why Wang and Zender find that when marginal cost is constant, the only equilibrium is to 
supply all units at the constant marginal cost.  
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differentiable function of time. As it can be seen from the equation (1) that in the uniform 

auction ( 1β = ), ( ) ( )( )s p q p p z′= −  holds for any ( )N t , since ( ) ( ) ( )tT p N s p q p′ ′ ′ ′= + , where  

( )q p  is the rivals’ total supply function. 

In the discriminatory auction ( 0β = ), the equation (1) takes the form of 

( ) ( ) ( )tp z q p N T p′ ′− − = . For example, if demand was ( ) tN t e−= , then by using the equation 

(1), ( ) ( ) ln( ( ))tN T p ns p ns p′ =  holds for the symmetric case. Then the solution of this ordinary 

differential equation (ODE) yields 1 1/
2( ) (ln ) n

discp Q c a Q − += + . Using the similar argument that 

we used in the above proof, there is a unique solution of this expression, which only admits the 

constant 2 0a = , hence ( )discp Q c= . If demand was, say ( ) (0) tN t N l= , where 1 0l≥ > , then the 

solution of (1) for 0β =  yields to, with symmetric players,  1 1/
3( ) (ln( / (0)) n

discp Q c a Q N − += + , 

which has again an economically meaningful solution only if 3 0a = . Thus ( (1), (0))Q N N∀ ∈ , 

( )discp Q c= . In the discriminatory auction modification of the demand functional form may 

change only the form of the second term in the inverse industry equilibrium supply function, 

( )discp Q . But the coefficient of the second term always gets to zero for an economically 

meaningful solution.  

3. Extensions 

3.1   Symmetric Firms with Capacity Constraints 
 
 In this section we consider the role of capacity constraints in equilibrium predictions. The 

following subsection regarding uniform-price auction is in the spirit of Genc and Reynolds  (Ref. 

9) and I will extend their approach to incorporate discriminatory auction. Without loss of 

generality let’s make the following transformation of time period in the demand formulation so 

that we obtain one more variable in the analysis. That is, let time t lτ↔  so that demand takes 
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the form of ( ) 1N lτ τ= − , where 1 (1) (0)l N N= − 3, which we call load factor and (0,1)l∈ , 

[0,1]τ ∈ . As defined earlier, the capacity index is / (0) 1k K N≡ ≥ , where ii
K K=∑  and iK  is 

the firm i’s total capacity. Also let marginal cost of production be constant up to the capacity.  

 Capacity constraints may eliminate some of the equilibria proposed in equations (5) and 

(6). Genc and Reynolds have studied this only for the uniform-price auction. In their analysis, 

some suppliers may tend to withhold some of their capacity from production, when demand is 

high and/or excess capacity is low in the market. These suppliers are called pivotal suppliers.  

Formally, a pivotal supplier j may withhold capacity during the trading period τ , if 

( )ii j
K N τ

≠
<∑ . When this inequality holds, pivotal supplier j may sell the quantity 

( ) ii j
N Kτ

≠
−∑  at the price cap p , and increase its profit. If (1)ii j

K N
≠

<∑  holds, then each 

supplier is pivotal during the entire trading period. For the sake of simplicity, we will consider a 

simple deviation which implies that whenever rival firms do not have enough capacity to meet 

demand, a pivotal supplier will emerge and meet the residual demand at the price cap p , and he 

will not supply any quantity below that price.  

There are three exogenous parameters ( , , )k l n  that determine parameter regions. If 

1 ( 1) /l n k n< − −  then each firm is pivotal at all times τ  in [0,1]. We refer to this as totally 

pivotal4 (TP) region, formally { }TP ( , , ) | 2, [1, /( 1)), (0,1 ( 1) / )k l n n k n n l n k n≡ ≥ ∈ − ∈ − − . 

Second situation is that each firm is pivotal for some trading period, which we call partially 

pivotal (PP) case, formally { }PP ( , , ) | 2, [1, /( 1)), [1 ( 1) / , 1)k l n n k n n l n k n≡ ≥ ∈ − ∈ − − . A third 

state is called never pivotal (NP) case, in which n-1 combination of firms have enough capacity 

                                                 
3 This demand is qualitatively same as the demand N(t)=1-t. By transforming the demand to ( ) 1N lτ τ= − , we 
extend the dimension of the parameters’ space from 2 to 3 to more extensively research the effects of capacity 
constraints in equilibrium predictions. Also this transformation helps us better compare the equilibrium predictions 
of this paper with that of Fabra et al. (Ref. 1).  
4 Here parameter regions are in the same vein of the regions depicted in Figure Two of Genc and Reynolds. The 
difference is that the load ratio curve is downward sloping of its argument k in the above definition. 
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to meet the peak load N(0). Formally, { }NP ( , , ) | 2, /( 1), (0,1)k l n n k n n l≡ ≥ > − ∈ , in which 

the pivotal supplier has no gain to deviate from the candidate optimal supply function. 

3.1.1   Role of Capacity Constraints in the Uniform-price Auction  

Given the functional forms we have assumed for demand and cost, we calculate, for each 

possible initial price, the SFE equilibrium prices and profit per firm 

 1( ) ( (0) )(1 )n
uni unip c p c lτ τ −= + − − , 

 
1 1

0

( (0) )(1 (1 ) )( ( ) )( ( ) / )
( 1)

n
SFE uni
uni

p c lp c N n d
n n lτ

τ τ τ
+

=

− − −
Π = − =

+∫           (7), 

where SFE
uniΠ  is the profit per firm associated with a candidate SFE. 

The simple type of deviation involves a supply function with no units offered for prices below 

the maximum price, p , and all units up to capacity offered at the price p . We compare the 

profit associated with this simple type of deviation with the profit from candidate SFE.  

 Let the parameters be in the totally pivotal region; ( , , ) TPk l n ∈ . Then the residual 

demand at time t for a deviating firm at price p  is, [ ( ) ( 1) / ] 0N n K nτ − − > . Total profit for the 

deviating firm is, 

 
1

0

( )[ (2 ) 2( 1) ][ ( ) ( 1) / ]( )
2

D
uni

p c n l n kN n K n p c d
n

τ τ − − − −
Π = − − − =∫         (8). 

Deviation profit exceeds profit associated with the candidate SFE if SFE D
uni uniΠ < Π , or equivalently 

if, (0) ( , , )( )p c k l n p cφ− < − , where 

 2 1( , , ) [ ( 1)(2 ) 2( 1) ] /[2(1 (1 ) ]nk l n n n l l n kl lφ +≡ + − − − − −       (9). 

 If the markup at the initial price for a candidate SFE is less than the fraction φ  of the 

maximum markup, p c− , then the candidate SFE is not an equilibrium. Equation (9) provides a 

sufficient condition for eliminating certain candidate supply function equilibria as equilibria. 
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Remark 3.1: The market power index (i.e., φ  function) is decreasing in the capacity index k, 

decreasing in the load factor l, and decreasing in the number of suppliers n for ( , , ) TPk l n ∈ . 

We omit the proof of this remark since it is analogous to the Proposition 2 in Genc and Reynolds 

(The difference is, in Genc and Reynolds the index is increasing in the load factor l). The 

economic interpretation of this proposition is straightforward. 

Now let the parameters be in the partially pivotal region; ( , , ) PPk l n ∈ . Then similar to 

the above remark it can be easily shown that market power index for the PP region is decreasing 

in the capacity index k, decreasing in the load factor l, and decreasing in the number of suppliers 

n. 

Some of the results we find above may be easily compared to those of Fabra et al. (Ref. 

1) for the case of a uniform price auction with long-lived bids and two symmetric suppliers 

according to the above parameter regions. First, in the never pivotal (NP) region, each firm has 

enough capacity to serve the entire peak load. Fabra et al. find a unique Nash equilibrium in 

which each supplier bids at marginal cost. This Bertrand-like result is a much more competitive 

prediction than the continuous SFE approach yields. As defined in equation (4) supply function 

equilibria always involve market clearing prices above marginal cost, and include the least 

competitive SFE (with initial price equal to the market reserve price, p ). The Fabra et al. 

prediction for the NP region holds regardless of how many discrete units each supplier is 

permitted to submit offers for. Second, in the totally pivotal (TP) region, neither firm has enough 

capacity to serve the off peak load; at least some of the capacity of each firm is required to meet 

demand at all times during a trading period. Fabra et al. find multiple pure strategy equilibria, but 

all such equilibria yield a market clearing price equal to the market reserve price, p . This is a 

more collusive prediction than that of the continuous SFE model, for which equilibrium prices 

are contained in an interval with upper bound equal to p . Third, in the partially pivotal (PP) 
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region, any single firm is pivotal for part, but not all, of the trading period. For step function 

bidding, Fabra et al. find that a pure strategy equilibrium does not exist for parameters in the PP 

region [see Lemma 3, Fabra et al., p. 35]; the equilibrium is in mixed strategies. Fabra et al. do 

not have characterization results for the mixed strategy equilibrium, except that the equilibrium 

price distribution approaches marginal cost pricing as parameters approach the NP region and 

that the equilibrium price distribution approaches pricing at the market reserve price with 

probability one as parameters approach the TP region. In the continuous SFE model there are 

multiple equilibria. The least competitive equilibrium yields an interval of prices with upper 

bound p . The most competitive equilibrium has prices above marginal cost; how far above 

marginal cost depends on load factor and capacity index parameters. We state that predicted 

market clearing prices for the step function model may be either higher or lower than equilibrium 

SFE market clearing prices depending on parameter values, when parameters are in the PP 

region.  

3.1.2 Role of Capacity Constraints in the Discriminatory Auction  

In this section we show that the only pure strategy equilibrium in the discriminatory auction may 

be ruled out because of the capacity constraints and the role of pivotal suppliers. This suggests 

characterization of mixed strategy equilibrium in the discriminatory auction with capacity 

constrained firms. 

            Suppose that parameters (k, l, n) are in the NP region, in that case equation (3) does not 

violate capacity constraints and admits a unique solution. That is, inverse industry supply 

function is differentiable and the solution is ( )discp Q c= . Since (n-1) rival suppliers have enough 

capacity to meet the highest level of load, there will be no incentive to deviate from marginal 

cost pricing. If a supplier offers a price above c then other firms already have incentives to 

undercut this supplier’s bid slightly so that they ensure to be called out. Also since no supplier 
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faces positive residual demand, any marginal price (i.e., the price of the marginal unit that 

equates supply to demand) above the marginal cost is eliminated as pure strategy equilibrium.  

When the parameters (k, l, n) are in the TP or the PP regions, then there is an incentive to deviate 

from marginal-cost-pricing. That is whenever capacity constraints bind, locally optimal offer 

schedules would not be globally optimal because profit function of deviating supplier becomes 

discontinuous and non-concave in price.  We discuss this next.  

Suppose that the parameters (k, l, n) are in the TP region, which means that the rival firms 

do not have enough capacity even to meet the off-peak load (1) 1N l= − .  Each firm’s some 

portion of capacity is needed. Then a pivotal supplier at time τ  faces the residual demand 

( ) 0ii j
N Kτ

≠
− >∑  at the price p . Its deviation profit at time 0 is 

1

1
(.) ( ) ( )D

disc l
p c dQ p c l

−
Π = − = −∫ .  

Obviously, D SFE
disc discΠ > Π , where SFE profit is 0SFE

discΠ =  since ( )discp Q c=  for all Q K≤ . Hence 

marginal cost pricing cannot be equilibrium and the deviation leads to the marginal price p . If 

parameters (k, l, n) are in the PP region, then a deviating firm’s profit at the trading period zero is   

1

( 1)

ˆ ( ) [1 ( 1) / ]( ) 0D SFE
disc disc

K n n

p c dQ K n n p c
−

Π = − = − − − > = Π∫ . 

Hence during the periods 0 throughτ ′ , where ( ) ( 1) /N n K nτ ′ = − , the marginal cost pricing 

suggested by ( )discp Q c=  for all Q K≤  is not part of the equilibrium.  

The rivals’ total capacity is not enough to meet the maximum load, with a positive probability a 

firm will face a residual demand in the PP region, with sure probability a firm will face a residual 

demand in the TP region. But this is true for each firm in the discriminatory auction; hence there 

will not be a pure strategy equilibrium. Thus, we have the following proposition.  
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Proposition 3.1: If parameters (k, l, n) are in the TP or the PP regions, in which the demand is 

higher than the rivals’ total capacity for at least some trading period, then deviation incentives 

rule out the only equilibrium candidate in the discriminatory auction.  

3.2    Mixed Strategy SFE with Asymmetric Suppliers in the Discriminatory Auction  
 
Horizontal Supply Functions in TP Region: 
 

In the above section we have seen that simple deviation rules out the only candidate pure 

strategy SFE when the parameters are in the TP region. It is also not optimal when all firms offer 

their generation units at the price cap since deviation is profitable. In this section we prove that it 

is equilibrium in the mixed strategies to bid a single price for the entire capacity of a supplier. 

Assume n=2 asymmetric suppliers that face time-varying load ( ) 1N lτ τ= −  such that 

1 2 (0)K K N+ ≥ , 1 (1)K N≤  and 2 (1)K N≤ . Also assume that firm 2 chooses a flat price 

2p (which is a continuous random variable) in ( , )c p  for his entire capacity with the probability 

distribution 2( )F p . 2( )F p  is an atomless distribution function with support [ , ]c p  .  Let 1p  be 

the price chosen by firm 1 for all of his capacity offered at time t in the trading period. Let 1k and 

2k  be capacity indices of firms 1 and 2, respectively. Note that i ik K= , 1, 2i = , since (0) 1N = . 

These parameters naturally lead to the TP set.  

Proposition 3.2: Assume that suppliers 1,2i =  are allowed to submit step supply function bids. 

Let 1 2k k k= + . Any price offer ( , )ip c p∈  for the entire capacity of supplier i ( 1, 2i = ) with the 

probability distribution ( )( 1 / 2) ( )( )
( )( 1 / 2)

i i
i

i

p c k l p p kF p
p c k l

− − + − −
=

− − +
  constitutes a mixed strategy 

Nash equilibrium in the TP region under the discriminatory auction. The auctioneer’s total 

expected payment to the suppliers is ( )(2 ) (1 / 2)p c l k c l− − − + −  during the trading period.  

Proof: The expected profit of supplier 1 during the entire trading period is, 
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1

1

( )1 1

1 1 1 1 1 2
0 ( ) 0

1 1 1 1 1 2

( ) [ ( ) ] ( ) [ ( ) ][ ( ) ] ( )

[1 ( )][ ] ( )[ ][1 / 2]

p tp

p t c

p p t c k dF p dt p t c N t k dF p dt

F p p c k F p p c k l

π = − + − −

= − − + − − −

∫ ∫ ∫ ∫  

in which we used the boundary conditions ( ) 1F p =  and ( ) 0F c = . Above the first expression is 

the profit that stems from when the rival firm chooses a price above 1p . In that case firm 1 

dumps his entire capacity to the market. The second expression of the profit is regarding the 

possibility that firm 2 chooses a price below 1p , and then firm 1 meets the residual demand, 

which is equal to the expected load (1 / 2l− ) minus the rival’s supply, 2k .  

In equilibrium 1 1( ) 0pπ ′ =  holds and it implies the probability distribution function  

     2
1 2

1

( )(1 / 2)( )
( ) ( 1 / 2)

p c k lf p
p c k l
− − −

=
− − +

                          (10),  

and the cumulative distribution function 

     1 1
1

1

( )( 1 / 2) ( )( )
( )( 1 / 2)

p c k l p p kF p
p c k l

− − + − −
=

− − +
          (11). 

Substituting this probability into the profit function gives 1 1 2( ) ( )(1 / 2)p p c k lπ = − − − , which is 

independent of 1 ( , )p c p∈  and supplier 1 can randomize the price, in this interval, with the 

probability in (11).  

Since the game is symmetric we can perform a similar analysis for player 2 and obtain 

the probability functions,  

1
2 2

2

( )(1 / 2)( )
( ) ( 1 / 2)

p c k lf p
p c k l
− − −

=
− − +

,    2 2
2

2

( )( 1 / 2) ( )( )
( )( 1 / 2)

p c k l p p kF p
p c k l

− − + − −
=

− − +
.  

Player 2’s profit will be 2 2 1( ) ( )(1 / 2)p p c k lπ = − − − , which is independent of 2 ( , )p c p∈ , and 

he can randomize any price in this interval.  

Now we need to show that these mixed strategies form equilibrium. In the above we have 

shown that the strategies satisfy the first order necessary conditions. Next we will prove that if 
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supplier i uses mixed strategies then supplier j’s ( j i≠ ) best response cannot be increasing step 

supply function. The following proof is in the spirit of Anwar (Ref. 15). Assume that firm 2 

chooses his mixed strategies in the price range ( , )c p  according to the above probability 

function. Let  ( , )j j jb q  be the sequence of bid prices and quantities for supplier 1, where 

1
1

m

j
j

q k
=

=∑ , and  1 2 ... mp b b b c≥ > > > > . Also let ( )j jb b= .  

Then the total expected profit for firm 1 during the trading period is,  

[ ]

[ ]

1 1

1

2 1

1 1 2

1 2 1 1 1
1 20

1 2

2 1 1 2 2
3

( ) ( ) ( ) ( ) ( ( ) ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ( ) ) ( ) ( )

t bp m m

j j j j
j jb c

t bp m m

j j j j
j jt b b

m

j j
j

b q b c dF p q b c N t k k q b c dF p dt

q b c dF p q b c dF p

q b c N t k k q q b c

π
= =

= =

=

   = − + − + − − − −  
   

+ − + −


 
+ − + − − − − −

 

∑ ∑∫ ∫ ∫

∑ ∑∫ ∫ ∫

∑
2

1 1

1 1 2

1

1 2 3

2 1
1

( )

...

( ) ( ) ( ) ( ) ( ) ( )

( ( ) ) ( ) ( ) ( ) ,

r

m r

m

b

c

b bp m m m m

j j j j j j
j j r j rt b b b

b m

j m
jc

dF p dt

q b c dF p q b c dF p q b c dF p

N t k k q b c dF p dt

−

−
= = = =

=





+

   + − + − + −   
     

  + − − − −  
  

∫

∑ ∑ ∑ ∑∫ ∫ ∫ ∫

∑∫

 

where the first integration refers to the load interval for which the profit is calculated. The 

second integration along with the summation represents expected profit from the sales of each 

unit of quantity jq at a price of jb , given the price chosen by rival. If firm 2 chooses a price (with 

some probability) above the firm 1’s maximum bid price, then firm 1 sells each unit of capacity 

at varying bid prices. Firm 2 also sells some quantity to the market since neither firm has enough 

capacity to meet even the off-peak load. The interpretation of other expressions is also similar. 

Note that the above profit function is separable in terms of bid prices for the bid steps. 

That is, 1 1( ) ( )jj
b bπ π=∑ , where  
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[ ]
1

2

1

1 1 1 1 1 2 1 1 1
2 10

1 1 1
2 1

1 1 1
2 1

( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ) ( )

( ) ( ) ( ) ( )

...

( ) ( ) ( ) ( )

t m m

j j j j
j j

t m m

j j j j
j jt

m m

j j j j
j j

b q b c F b q b c q b c N t k k q b c dt

q b c F b q b c q b c dt

q b c F b q b c q b c

π
= =

= =

= =

  
= − + − − − + − − − −  

   
  

+ − + − − −  
   

+

+ − + − − −

∑ ∑∫

∑ ∑∫

∑
1

1

.
mt

dt
−

  
  
   

∑∫

 

This profit expression simplifies to  

[ ]
1

1 1 1 1 1 1 1 2 1 1
0

( ) [1 ( )] ( ) ( )( ) ( ( ) ) ( ) ,
t

b F b q b c F b b c N t k k q dtπ = − − + − − − −∫  

where 1( )F b  is as in (11) with 1 1b p=  .  We take the first derivative of the profit function and 

obtain,  

1

1

1

1 1 1 2
01 1 1 2 1 1 1 1 1 1

1

( ( ) ) ( 1 / 2)
( ) ( 1 / 2) ( / 2) .

1 / 2 1 / 2

t

t

k N t k dt q dt q k l
d b q k k t l k kt t lt

b k l k l
π

  − − + − + 
+ − + − − +  = =

− + − +

∫ ∫
 

Let 2 1 1 1 / 2Y k k t l≡ + − +  and 2
1 1 1 / 2Z kt t lt≡ − + . 

First note that if 1 0t =  then Z = 0, and if 1 0t >  then Z > 0.  Next, 

2
2 1 1 1 2 1 1 2(1 )(1 ) (1 ) (1 )[1 (1 )] (1 )[1 ] 0

2 2
l lZ Y k t t t k t t k l− = − − − − = − − − + > − − − ≥ , 

with strict inequality for 1 1t < . The inequalities involving Z and Y, combined with the conditions 

1 1q k<  and  1 / 2 0k l− + > , imply that 1 1

1

( ) 0d b
db
π

< . 

This derivative implies that firm 1 should reduce its bid price from 1b  to 2b . Then firm 1 will 

have m-1 bid prices. Repeating the above process (m-2) times results in a single price offer, 

which is in the interval ( , )c p , for all units of his capacity. Thus, optimal response to the rival’s 
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single-price-offer is to submit one price for all units of generation. If we perform the similar 

analysis for firm 2, we obtain that firm 2 also submits a single price offer for his entire capacity.  

Given that  1 20 ( ), ( ) 1F p F p< < , 1 1( )pπ and 2 2( )pπ  are twice differentiable and concave 

in prices and when supplier i uses mixed strategies then supplier j’s ( j i≠ ) best response cannot 

be increasing step supply function, we conclude that ( )( 1 / 2) ( )( )
( )( 1 / 2)

i i
i

i

p c k l p p kF p
p c k l

− − + − −
=

− − +
  

constitutes a mixed strategy Nash equilibrium in the TP region under the discriminatory auction 

for 1,2i = . 

The auctioneer’s total expected payment to the players will be, 

1

1 1 2 2
0

( ) ( ) ( ) ( )(2 ) (1 / 2)p p c N t dt p c l k c lπ π+ + = − − − + −∫ , where the first term is firm 1’s profit, 

the second term is firm 2’s profit, and the final term is the total cost of production in the entire 

trading period.        �  

 

Smooth Supply Function Case:  

Now consider the case in which suppliers are allowed to bid in continuous supply function 

strategies (instead of step supply functions), and a rival supplier uses a mixed strategy. Then we 

claim that one cannot construct a smooth increasing offer function that yields higher expected 

profit than the expected profit from any horizontal offer. The intuition behind that is that by 

choosing a sufficiently large number of steps, one could come arbitrarily close to the profits 

obtainable from a smooth supply function by using a multi-step offer function. But in the proof 

of Proposition 3.2 we show that multi-step offer function yields lower profit than a single step 

offer function. Thus, the optimal response to the rival’s mixed strategy cannot be a smooth 

supply function.   
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Horizontal Supply Functions in PP Region:  

Now consider the case such that for 1,2i = , 1 ( ) il N kτ τ− = ≥ , if (0, ]tτ ∈  and ( ) iN kτ < , if 

( ,1]tτ ∈ . Also assume that 1 2(0)N k k≤ + . This case represents the PP set.   

Proposition 3.3: Assume that suppliers are allowed to submit step supply function bids. Let ik  

be the capacity index of supplier i ( 1, 2i = )  and let 1 2k k k= + . There exists a mixed strategy 

Nash equilibrium in the discriminatory auction in the PP region through the price ( , )ip c p∈  

offered for the entire capacity of supplier i with the probability function, 

2 2

2

( )(1 2 / 2 ) ( )(1 / 2 / 2 )( )
( )(1 2 / 2 )

i i
i

i

p c t lt l tk p p t lt l tkF p
p c t lt l tk

− − + − + − − − + − +
=

− − + − +
. 

Proof: Suppose that (supplier 1 believes that) supplier 2 chooses a price 2 ( , )p c p∈  with 

probability 2( )F p  and supplier 1 simultaneously responds to rival’s strategy with a price 1p  for 

his entire capacity. Then the expected profit of supplier 1 during the trading period is, 

1

1

1

1

( )

1 1 1 1 1 2
0 ( )

( )1

1
( )

2
1 1 1 1 1 2

2
1 1

( ) [ ( ) ] ( ) [ ( ) ][ ( ) ] ( )

[ ( ) ] ( ) ( ) 0 ( )

[1 ( )][ ] ( )[ ][ / 2 ]
[1 ( )][ ][1 / 2 /

p tpt

p t c

p tp

t p t c

p p t c k dF p p t c N t k dF p dt

p t c N t dF p dF p dt

F p p c k t F p p c t lt tk
F p p c l t lt

π
 

= − + − − 
  
 

+ − + 
  

= − − + − − −

+ − − − − +

∫ ∫ ∫

∫ ∫ ∫

2],

 

where t solves for 21 lt k− = .  

In equilibrium 1 1( ) 0pπ ′ =  holds and it implies the probability and the cumulative distribution 

functions  

1
1 2

1

( )( )( )
( ) ( )
p c A Bf p

p c B
− −

=
−

 , 1 1
1

1

( )( ) ( )( )( )
( )( )

p c B p p AF p
p c B

− − −
=

−
, respectively, 

where 2
1 11 / 2 / 2A t lt l tk= − + − + , and 21 2 / 2B t lt l tk= − + − + . 
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Since the game is symmetric we can perform similar analysis for player 2 and obtain the 

probability functions,  

 2
2 2

2

( )( )( )
( ) ( )
p c A Bf p

p c B
− −

=
−

  and  2 2
2

2

( )( ) ( )( )( )
( )( )

p c B p p AF p
p c B

− − −
=

−
,   

where 2
2 21 / 2 / 2A t lt l tk= − + − + , and B  is as above. 

Next we will show that if supplier 2 uses mixed strategy then supplier 1’s best response cannot 

be increasing step supply function in prices. Assume that firm 2 chooses his strategies in the 

price range ( , )c p  according to the above probability function.  

We form the horizontal supply strategies as follows. For simplicity assume that firm 1 chooses 

two price-quantity pairs,  ( , )j j jb q ,  1, 2j =  , where  
2

1
1

m

j
j

q k
=

=

=∑ , and  1 2p b b c≥ > > . Also let 

( )j jb b= . One can easily extend this analysis to m>2 price-quantity pairs, as we did above. The 

total expected profit for firm 1 during the trading period is,  

[ ]

[ ]

[ ]

1

1

1

2 1

1 1 2

2

1 1 1 1 1 2
0

1 1 2 2 1 1 1

1 1 1 1 2 1 1 2

2 2

( ) ( ) ( )( ) ( )

( )( ) ( ( ) ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

( ( ) )( ) ( )

t p

b

b

c

t bp

t b b

b

c

b q b c k q b c dF p

k q b c N t k k q b c dF p dt

q b c k q b c dF p k q b c dF p

N t k b c dF p

π
= − + − −


 + − − + − − − −  


+ − + − − + − −


+ − − 


∫ ∫

∫

∫ ∫ ∫

∫

[ ]
3 1

2 1 2

1

3 1 2

1 1 1 1 1 2 1 1 2

1

2 2

[ ( ) ( )]( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) .

t bp

t b b

bp

t b b

dt

N t k q b c k q b c dF p k q b c dF p dt

N t b c dF p N t b c dF p dt

  + − − − + − − + − − 
  
  + − + − 
  

∫ ∫ ∫

∫ ∫ ∫
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The above profit function is separable in terms of bid prices for the steps. That is, 

1 1( ) ( )jj
b bπ π=∑ . After some simplifications we write the profit function in terms of  1b  as 

follows: 

1

3

2

1 1 1 2 1 1 1
0

1 1 1 1 3 1 1

( ) ( ) [ ( ) ( )]( )

[1 ( )] [ ( ) ]( ) [1 ( )] ( ),

t

t

t

b F b N t k k q b c dt

F b N t k b c dt F b t q b c

π = − − − −

+ − − − + − −

∫

∫
 

where 1( )F b  is as in above with 1 1b p=  .  We take the first derivative of the profit function and 

obtain, 

 

1

1

3

2

1 1
1 2 1 1 1

1 0

1 2 1 1 2 1 1 1 1
0

1 1 1 1 1 1

( ) ( ) [ ( ) ( )]( )

( ) [ ( ) ( )] [ ( )( ) 1 ( )]

[ ( )( ) 1 ( )] [ ( ) ( )]( ) .

t

t

t

t

d b f b N t k k q b c dt
db

F b N t k k q dt t q f b b c F b

f b b c F b N t k q b c dt

π
= − − − −

+ − − − + − − + −

+ − − + − − − −

∫

∫

∫

 

We find that 1 1 1 1[ ( )( ) 1 ( )] ( ) / 0f b b c F b B A B− − + − = − < , where 1 ,A B  are as defined above and 

2
1 2[ 1 / 2] / 2 0B A t k lt t l− = − + ≤ − < , and  0B > . Also 1 1( )N t k q= −  and 2 2( )N t k=   hold. 

Hence, in the above the first two terms are positive and the rest is negative. If 1 1k q−  is large, 

then the first two terms approach to zero since 1 0t → . Therefore  1 1

1

( ) 0d b
db
π

< . Subsequently we 

conclude that offering the entire capacity at a single price is more profitable than using a step 

function with multiple bid prices for the quantity steps.  �  

 

4.  Conclusions 

We examine generators’ bidding behavior in the uniform and discriminatory price auctions under 

various assumptions on equilibrium bidding types, and capacity constraints. We discuss the 
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difficulties, from operational and computational points of view, of the mixed strategy 

equilibrium in the market designs allowing discrete offers, even though both types of bidding 

rules have different predictions. Some of our results in the basic model are consistent with the 

current literature. We show that the discriminatory auction SFE is unique, but the equilibrium is 

multiple in the uniform auction. When capacity constraints bind and pivotal suppliers face 

positive residual demand we obtain that there is no pure strategy SFE in the discriminatory 

auction. In the mixed strategy supply function analysis we examine the nature of a best response 

to a rival strategy that is a mixed strategy over horizontal supply functions. We show that 

offering all of the capacity at a single price is more profitable than using a step function with 

multiple bid prices for the steps. We conclude that it is not clear whether the discriminatory 

auction format is tractable for the suppliers and/or the auctioneer or whether it entails low prices 

for the consumers.  
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