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Abstract

We study equilibrium investment strategies of �rms competing in stochastic dynamic market

settings and facing two types of investment structures: investment with signi�cant lead time

(or time-to-build) and investment without (or minor) lead time. We investigate how invest-

ment behavior changes when investment is subject to time-to-build versus when it is not. We

characterize equilibrium investment strategies under several information structures and compare

results to the social optimum. We o�er some new results. The model predicts that, controlling

for demand, and production and investment costs, investments and outputs can be higher in

progressive industries (which often exhibit time-to-build) than in fast-paced industries (where

time-to-build is insigni�cant). Furthermore, for both investment types (investment with or with-

out time-to-build) we o�er a novel equilibrium in which �rms incrementally invest. This behavior

is driven by demand uncertainty and capacity constraints. Also, expected outputs are lower than

Cournot outputs as �rms face uncertainty. Moreover, the amount of uncertainty has di�erent

e�ects over investment types.

Key Words: Capacity Investment; Capacity Constraints; Progressive Industry; Fast-paced

Industry; Demand uncertainty; Time-to-build; Markov perfect Equilibrium; Open-loop Equilib-

rium.
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1 Introduction

Some capital investment projects can be completed with alternative production technologies. First,

consider a market where �rms run technologies which are highly capital intensive and �rm invest-
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ments take time to be productive, that is, there is a lead time between investment and production.

In other words, investment is subject to a time-to-build constraint. Next, consider another market

in which �rms operate production technologies which exhibit lower or no time-to-build constraint

(relative to the former market). We coin investment in this market as instantaneous investment,

because �rms can make their investments productive in a short time period or without a signi�cant

lag. An example for the former structure is a power market which is heavily based on nuclear or

hydroelectric generators (e.g., Norway's electricity market is based on hydropower, and it is nuclear

power in France). If an entrepreneur or a �rm chooses to invest in this market, he/she realizes that

investment can take years to be productive. For instance, the largest hydroelectric dam was con-

structed in China, and it took about 20 years to be completed, from construction to fully operational

stages. On the other hand, if he/she decides to invest in the latter market in which main production

technologies are, say, wind, solar and natural gas-�red generators (e.g., Denmark power market is

predominantly wind-based supported by natural-gas generators), the investment can be productive

�instantly� or with a short delay (relative to the former structure), as these production technologies

can be purchased in any size from the energy technology suppliers and added to the production line.

For example, a 5 MW capacity wind farm can be operational in a month from investment decision to

production. To give di�erent examples, consider cell phone industry in which �rms (e.g., Samsung,

Apple, and Sony) introduce their new models at least once a year. However, car producers such as

Toyota, Honda, GM, and Chrysler introduce their new versions (generations) of models in about 7

years. Similarly, for passenger plane makers such as Boeing, Airbus, or Bombardier it takes several

years to develop a new model airplane, and then they make lengthy �ight tests before they start

carrying passengers. In these examples, while car and plane sectors could be viewed as industries

with signi�cant lead times, the cell phone producers could be considered operating in an industry

with a minor (or insigni�cant) lead time. We intend to compare the market outcomes given the

investment opportunities in these two distinct markets. Speci�cally, we intend to address the fol-

lowing questions: in which market structure do �rms perform better? Should an incumbent �rm

attempt to earn higher pro�ts by investing in its own market, or in a new market? More generally,

what are the e�ects of addition of time-to-build to capital investment competition?

Capacity investments which are the main subject of this paper are worth billions of dollars every

year. World energy investment outlook report of International Energy Agency (IEA) (2003, 2014)

has questioned capacity investments that are required in the power sector. It �nds that in the

OECD countries power sectors need to invest $4 trillion between 2000 and 2030, and almost half
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of this is needed for power generation investment. Indeed, power generation capacity investments

are projected to be 2000 GW between 1999 and 2030 in the OECD. According to this IEA report

insu�cient capacity investments caused market failures: price crises in New Zealand (during 4/2001-

7/2001, and 4/2003-6/2003), Australia (in 1/2002-3/2002), Nord Pool (in 12/2002-03/2003), and

Ontario, Canada (in 7/2002-7/2003) were attributed to delay in capacity investments, and the tight

production capacities which could not catch the growth in electricity demand (IEA, 2003, Table 1,

p. 26). As a result, some governments resorted to intervene into power markets to resolve the price

crises by directly investing in peaking plants, or encouraging consumers to respond to the prices, or

capping retail prices.1 In relation to capital investments, the Canadian electricity sector is expected

to invest about $300 billion from 2010 to 2030 to meet demand growth and maintain/refurbish

existing plants, according to the Canada's electricity infrastructure report (2011). About $200

billion will be invested in generation and the rest in transmission and distribution sectors. Large

scale investments are not unique to the energy sector. For example, in the automotive industry China

invested over $12 billion US in 2013 to increase production capacities, while worldwide investment

was nearly $18 billion. To produce more vehicles automotive assembly capacities have been increased

by either building new plants or expanding existing plants (cbc.ca/news/canada/windsor/).

To shed light on capital investment issues, we initially start with a two-period imperfect compe-

tition model. There are two non-identical �rms who face demand uncertainty before making their

investment decisions. Firm production is constrained by capacity and capacity accumulation is en-

dogenous. Under a time-to-build constraint, investment will be available to use in the following

period. In the �rst period �rms compete for outputs. At the same time, they make investment

decisions given that demand is uncertain in the next period. After uncertainty unfolds in the second

period, �rms choose production quantities. Under no time-to-build constraint (i.e., instantaneous

investment), �rms can invest and produce simultaneously and non-cooperatively. In this structure,

�rms can invest in the initial and �nal periods while �rms can only invest at the outset under the

former structure (time-to-build) due to the lag between production and investment. The model in-

corporates uncertainty and production capacity constraints into a dynamic game-theoretic setting,

as well as di�erent information structures (i.e., equilibrium concepts) and investment types. These

features are the key ingredients of our modeling aspect and add realism to the capital accumulation

1In a recent report published by International Energy Agency (IEA, 2016), available at

https://www.iea.org/publications/freepublications/publication/REPOWERINGMARKETS.pdf in Figure 1.2,

we observe that electricity markets have been restructured in most jurisdictions in the world, with di�erent degrees

of competition being introduced both in wholesale and retail sectors. See also Genc (2012) for restructuring issues.
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competition. We also extend the model to three periods which will allow �rms to invest consecu-

tively. The number of possible equilibria will increase with the addition of new time stage and the

equilibrium investment strategies will become an involved function of model parameters.

We compare equilibrium investment strategies under two information structures: Markov perfect

and open-loop approaches. This is to compare strategic to preemptive investments. While these in-

formation structures and hence the equilibrium concepts have been commonly used in deterministic

dynamic games literature (Reynolds, 1987, Cellini and Lambertini, 1998, Long et al., 1999, Dockner

et al., 2000 and Figuières, 2009), we will compare their predictions in market settings under uncer-

tainty. Each one has its own advantages in computing or characterizing equilibrium decisions. Also,

this comparison is not only suitable as a technical exercise, but also becomes an interesting question

for mechanism and auction designers, who can set up the rules of the game and how it is played

and solved. Furthermore, Markov perfect solution may not be feasible for some oligopolistic games

under uncertainty due to curse of dimensionality, as argued in Genc et al. (2007) and Genc and

Sen (2008). However, they have shown that open-loop solution for stochastic dynamic games with

constraints can be found by formulating the game as a stochastic programming problem. For such

large-scale games, while Markov perfect solution is out-of-reach, open-loop solution is attainable and

tractable.

There is a vast literature that has examined capital investments in di�erent optimization and

market settings. They mainly utilize time-to-build constraint for general equilibrium or corporate

investment models. Articles studying capacity investment games under uncertainty remain sparse.

Situations involving time-to-build have rarely been at the core of such studies. Our contribution

is to examine and compare market performances (prices, pro�ts, outputs) under di�erent invest-

ment structures (time-to-build versus no time-to-build) over various equilibrium concepts (open-

loop, Markov perfect, and social optimum) in dynamic game settings under demand uncertainty to

show the role of production constraints and the number of periods on investment behavior.

Some of our new �ndings are as follows. Controlling for demand, and production and investment

costs, we determine the conditions under which investments and outputs are higher in progressive

industries and the conditions under which they are higher in fast-paced industries. Also, for both

investment types (investment with or without time-to-build) we o�er a novel equilibrium in which

�rms incrementally invest. This behavior is driven by demand uncertainty and capacity constraints.

Moreover, expected outputs are lower than Cournot outputs as �rms face uncertainty. In addition,

the amount of uncertainty has di�erent e�ects on investment types.
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We �nd that equilibrium investment strategies are multiple under both investment structures.

However, the number of equilibrium strategies is higher under instantaneous investment structure

than under the time-to-build. Also, with instantaneous investment �rms may prefer delaying their

investments in the initial period when uncertainty increases, and then boost investment in the

second period. With time-to-build, investment decisions will be made only once and before the

realization of uncertain demand. Also the equilibrium investment per �rm increases in demand

uncertainty variable. Moreover, production capacity constraints impact investment decisions. If a

�rm is subject to a time-to-build constraint and undertakes investment, then its capacity constraint

will always be binding in the high demand state and production equals total capacity. If a �rm does

not face a time lag, then it never invests when demand is �low�. However, in the case of high demand

realization its investment will be fully utilized and its production constraint will bind. Finally, based

on the information structure (Markov perfect versus open-loop) we �nd that equilibrium investment

predictions di�er as long as �rms are asymmetric in terms of capacity constraints. In particular,

if one �rm's capacity constraint is binding and other �rm's is not then Markov perfect investment

will always be higher than the open-loop investment no matter what type of investment is executed;

otherwise they will yield the same investment predictions.

2 Literature Review

A common assumption in most of the investment literature is that investment at a given time is

productive in the same period, that is, there is no lag between production and investment. An

alternative assumption is that investment takes time to be part of capital stock. In reality, in-

vestment does not become productive instantly for many industries and there is some lead time

between investment and production. As noted by Koeva (2000) time-to-build constraint is empiri-

cally observable, and it varies from industry to industry and is on average in the range of 13 to 86

months.2 However, most studies have not paid attention to this aspect and assumed instantaneous

investment in strategic capital acquisition. A justi�cation for a no time-to-build constraint could be

that �rms might have already overinvested and some of their production capacities might be staying

idle. Using the existing idle capacity with minor maintenance and improvement may be considered

as instantaneous �investment�, and hence no time-to-build constraint. Or, it could be that capacity

2While time-to-build varies over industries, the length of time-to-build is often variable within an industry and

can create additional source of uncertainty in decision making process (e.g., construction of Areva?s powerful nuclear

reactors called the EPR, Evolutionary Power Reactor, as pointed by a referee).
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(such as land, machinery, equipment, or buildings) can be purchased from an intermediate market

and put into production process instantly (or in a short period of time).

Most papers in the capital accumulation literature (e.g., Spence (1979), Dixit (1980), Reynolds

(1987), Cellini and Lambertini (1998), Dockner et al. (2000) and Figuières (2009), among oth-

ers) assumed market settings with no uncertainty and no lag between production and investment

(i.e., instantaneous investment). They studied capacity investment games mainly within the linear-

quadratic framework and under various assumptions including �nite-time, in�nite-time, and pre-

commitment versus no commitment. These papers o�ered valuable insights on investment behavior.

However, there can be many factors that create signi�cant lag between the investment decision and

the start of the production process. To our knowledge, only a few papers in game-theoretic liter-

ature (e.g., Grenadier (2000, 2002), Pacheco-de-Almeida and Zemsky (2003), Genc et al. (2007),

Garcia and Shen (2010), Garcia and Stacchetti (2011), and Genc and Zaccour (2013)) implemented

time-to-build constraint. They examined perfect competition and oligopoly models to characterize

equilibrium investments under various information structures.

In terms of explaining the e�ect of time-to-build on equilibrium behavior, Pacheco-de-Almeida

and Zemsky (2003) is closer to the current paper. While they do not compare the total investments

and market outcomes with time-to-build, which is parameterized and is between zero and in�nity, to

the ones without time-to-build, we compare the market performance and investment dynamics with

and without time-to-build. They mainly focus on equilibrium characterization with time-to-build

and explain how the duration of time-to-build impacts market outcomes. The main conclusion of

Pacheco-de-Almeida and Zemsky (2003) is that social welfare is mostly decreasing in time-to-build.

However, this result can reverse when one takes into account for the e�ect on equilibrium existence.

This is indeed similar to our �nding. However, while they explain their result in terms of the

duration of time-to-build, we explain our result in terms of the number of investment opportunities

and initial capacity endowments. Granted that the market structure in Pacheco-de-Almeida and

Zemsky (2003) is fundamentally di�erent than our paper: they solve an in�nite horizon game in

which there is one time uncertainty, and assume that there is either demand or no demand for the

product, and �rms are symmetric and do not have any initial productive capacities, and the length of

time-to-build could vary. We assume that �rms always face uncertainty before they make investment

decisions, there is always demand for the product, and demand will increase with some probability

to justify the capital expenditure (i.e., investment). Furthermore, in our model �rm productions

are bounded by production capacity and �rms are allowed to have non-identical capacities. The
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critical assumptions of their model which create some di�erent (equilibrium) results than ours are

that i) in their model �rms can invest after the resolution of uncertainty, however in our paper

�rms always make investments under uncertainty; ii) while they solve in�nite horizon game with

one time uncertainty which is resolved at time 0 after which there is a known and �xed demand for a

product, we solve two- and three-period models with multiple uncertainties on demand growth; iii)

in their model the amount of uncertainty determines which equilibrium exists, in our model capacity

endowments mainly determine the equilibrium type.

In terms of modeling aspect, a closely related paper to this research is Garcia and Shen (2010),

who developed a dynamic duopoly model with a stochastically growing demand. Their production

and investment costs are identical to our paper. Both papers (Garcia and Shen and this paper) study

investment with time-to-build under uncertainty. The uncertainty modeling is the same. Demand

either goes up or stays the stay with a known probability distribution function. While, Garcia and

Shen do not intend to explore the e�ect of time-to-build, which is a modeling assumption in their

paper, we explore the impact of investment lag by comparing investment outcomes with and without

time-to-build. While they o�er investment characterization for a given period, they do not examine

multiple investment strategies and how an investment in a given period would impact the investment

strategy in the following period. We o�er equilibrium investment strategies made over time (in the

three-period model for investment with time-to-build, and in the two-period model for instantaneous

investment). Furthermore, while we speci�cally examine the impact of demand uncertainty on

investment strategies with and without time-to-build, Garcia and Shen do not mention the e�ect

of uncertainty. Both papers characterize the social optimum investment pro�les, and �nd that

�rms with market power underinvest relative to social optimum. Also, our investment strategy

characterization proposed (in Propositions 1 and 2 in section 4) for investment with time-to-build

corresponds to their main result in Theorem 1. However, we also o�er a di�erent equilibrium result

in our Proposition 11 (in the case of three periods) in which we characterize consecutive investment

strategies in three periods. Consequently, Garcia and Shen and this current research are in similar

spirit for Markov perfect equilibrium (MPE) characterization of the duopolistic competition for

investment with time-to-build. The key results (such as MPE investment strategy characterization

and the result that the duopolistic market fails to induce the socially optimal level of capacity) in

Garcia and Shen are also available in this current paper. However, our main di�erences arise when

i) comparing market performance with and without time-to-build; ii) extending the duopoly game

to three periods to examine incremental investment dynamics; iii) including open-loop equilibrium
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concept and showing market outcome equivalence (and nonequivalence) between open-loop and

Markov perfect solutions.

Chevalier-Roignant et al. (2011) provide an overview of strategic investment under uncertainty.

They note that under uncertainty di�erent types of investment strategies may lead to di�erent

market equilibrium outcomes. In our paper, we also show in a �nite horizon discrete time stochastic

game setting that investment strategies (and market outcomes) under di�erent equilibrium concepts

(open-loop and Markov perfect) may result in di�erent investment rules. Swinney, et al. (2011)

consider the timing of capacity investment decisions in monopolistic and duopolistic market settings

under demand uncertainty.

Grenadier (2000) adds time-to-build constraint into his perfectly competitive market model, and

observes, in an in�nite horizon planning, that if the time-to-build is �xed and known beforehand,

the optimal investment strategy when there is time-to-build will be the same as the one when there

is none. We �nd a similar e�ect in a �nite planning horizon under certain conditions. Grenadier

(2002) recognizes the di�culty of characterizing and computing state dependent investment strate-

gies in imperfect competition, and therefore studies equilibrium investment strategies of �rms in

a continuous time in�nite horizon Cournot-Nash competition framework by using a real options

approach. However, we explicitly consider strategic interactions in imperfectly competitive setting

without reducing state-space to �gure out subgame perfect equilibrium investment strategies with

and without time-to-build. Related to capacity planning Bar Ilan et al. (2002) solve a �rm's impulse

control problem, assuming that the �rm does not respond to changing demand conditions (nor to

other �rms' reactions). Consequently, these papers do not consider investment behaviors in imper-

fectly competitive market settings with capacity constraints and uncertainty in a �nite time horizon,

which is the theme of the current paper.

Aid et al. (2015) employ a competitive model (a social planner problem) with time-to-build

under three di�erent assumptions of demand intercept uncertainty. They �nd that the impact of

volatility on optimal investment could be negligible when time-to-build is present. However, in our

market structure, which is imperfectly competitive market with a simple demand distribution, a

�rm's strategic investments with time-to-build increase in demand uncertainty variable.

Besides the game-theoretic capacity investment analyses, there is a stream of literature examining

lumpy capacity investments using real options framework (e.g., Li and Wang (2010), Chen (2012),

and Hahn and Kuhn (2012)). Even though time-to-build constraint is omitted in most of the

game-theoretic models, it has been employed in growth literature emphasizing optimal corporate
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investment decisions. The corporate investment literature mainly incorporates real options view of

investment and the standard net present value rule. To explain business cycles, some optimal growth

models have incorporated time-to-build. Kydland and Prescott (1982) and the papers following

them (such as, Majd and Pindyck (1987), Zhou (2000)) suggested that a time-to-build constraint

better describes the cyclical �uctuations than do standard cost of adjustment models. Del Boca et

al. (2008) generalized the Tobin's Q model of investment to accommodate multiple capital types

(structure and equipment) and time-to-build.

The research in this paper is di�erent than the previous research in several aspects. The key

di�erence is the characterization of equilibrium investment strategies in the imperfectly competitive

market with and without lead time. We also characterize and compare capacity investment strategies

under two equilibrium concepts (open-loop and Markov perfect) in a dynamic game to pinpoint the

strategic value of investment in a simple model which incorporates demand uncertainty and capacity

constraints simultaneously. Compared to prior work, we o�er some new results under time-to-build

constraints.

3 Model

We examine a duopolistic non-cooperative competition model of irreversible investment under de-

mand uncertainty. In this capital/capacity accumulation game we analyze investment behavior and

compare the market outcomes in the presence of the two distinct investment structures: i) instanta-

neous investment which may be viewed as purchasing capacity from the competitive capacity market

and making this investment productive instantly; ii) investment with lead time under which �rms

may choose to build their own capacities or extend the existing ones that take time to be productive.

We assume that �rms produce a homogeneous output (e.g., electricity).

We characterize investment strategies using Markov perfect (and open-loop Nash equilibrium

presented in the extension section) solution concept(s). Both types of equilibria have been com-

monly used to study investment pro�les of �rms in non-cooperative competition settings without

uncertainty. These concepts generally lead to di�erent market predictions and investment pro�les,

and hence we will compare and contrast the market outcomes under both frameworks.

For any market setting time evolves discretely and state variables (demand and capacity states)

have a continuous support. For a given demand distribution and capacity state vectors, each �rm may

prefer to increase its production capacity before demand uncertainty unfolds. To keep the model
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manageable, we start with a two-period game t ∈ {0, 1}, where there are two possible demand

states at time 1 (in theoretical framework two-stage models are common and it is assumed that they

provide a good approximation for investment projects). We will extend it to three periods, in which

there will be four additional demand states at time 2, to track the evolution of investment strategies.

Following Garcia and Shen (2010) the inverse market demand is Pt(Qt) = p̄−σtQt, which is the

price that consumers face for the total consumption quantity Qt, where the slope term σt has the

following distribution.

σt+1 =

 σt/(1 + g) with probability θ

σt with probability (1− θ)
(1)

At the initial period (t = 0) assume σ0 = 1, without loss of generality. The demand has a

variable slope and shifts pivotally around the maximum willingness to pay price p̄. Demand either

increases with a growth rate g > 0 into the high demand state (called �upstate�) or stays the same

(called �intermediate state�). We essentially take demand growth into account so that �rms have

an incentive to invest. These demand scenarios intrinsically represent growth and stagnation states

in the economy. Another relevant demand scenario could be a downstate in which demand would

go down and correspond to a recession state; however for technical reasons we omit this state as

the number of periods would increase the inclusion of downstate could theoretically cause negative

price.

For simplicity, the production of q units of homogeneous product costs C(q) = cq with c ≥ 0.

In general �rms could have di�erent marginal costs and the analysis will hold even if c = 0, as can

be seen from the expressions (2) and (4) below. Similar to Pacheco-de-Almeida and Zemsky (2003)

and Garcia and Shen (2010), investment in production capacity costs F (I) = fI for investment

level I ∈ <+, where f ≥ 0. It is common to assume away a �xed cost component in the investment

cost function, as the �xed cost creates non-convexity and hence the possibility of lumpy investments.

There is no innovation so that capacity expansion does not impact the marginal production cost. The

endogenous capacity states evolve as follows. In the instantaneous investment case, the production

capacity at time t+ 1 will be equal to the production capacity at time t plus the investment made

at the time t+ 1, that is Kt+1 = Kt + It+1. For the investment with time-to-build, the production

capacity at time t + 1 is Kt+1 = Kt + It in which the investment made at time t will be available

for production at time t+ 1. We assume away capacity depreciation as there are only a few periods

in the game. To include capacity depreciation into the model Kt should be replaced by (1− τ)Kt,
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where τ would be depreciation rate between 0 and 1. We will examine the impact of each investment

type on market outcomes.

There are two �rms i and j, and i 6= j, and each �rm is risk-neutral and maximizes its expected

sum of pro�ts independently of its rival. We assume an ongoing competition so that each �rm has

Kk0 units of production capacity, k = i, j, and has the option of increasing its capacity through

investment Ikt. Investment is irreversible and perfectly divisible. The model can easily be extended

to include more than two �rms, if we would assume identical �rms in terms of initial capacities, as

can be seen from the expressions (4) and (5) below.

It will be useful to present the results in connection with Cournot equilibrium (interior solution)

outputs. For �rm k let qcku and q
c
kd denote interior outputs in period 1 (u denotes upstate and d de-

notes intermediate) demand states when no capacity constraints bind, and qck0 be the corresponding

quantity in period 0;

qck0 ≡
p̄− c

3
, qckd ≡

p̄− c
3

, qcku ≡
(p̄− c)(1 + g)

3
. (2)

4 Investment with Lead Time

Although businesses often prefer a shorter lead time, which is the required amount of time between

starting and �nishing a process (including pre-processing, processing and post processing), it is an

important constraint in supply chain management.

This section examines investment behavior when there is one period lead time between investment

and production. Firms i and j start with initial capacities Ki0 ≥ 0 and Kj0 ≥ 0 which can be

di�erent.

Producer i maximizes its expected sum of pro�ts to choose its investment and output strategy

denoted ψi = (Iit, qit) and solves

max
ψi

E0

∑
t∈{0,u,d}

[Pt(Q)qit − cqit − fIit] (3)

subject to

0 ≤ qit ≤ Kit,

Kit+1 = Kit + Iit, Iit ≥ 0,
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where E0 is the expectation operator at time zero. There are two states at time 1, namely upstate

(u) and intermediate state (d).3 Because there are two periods, we ignore a discount rate, which can

be easily embedded into the above expected pro�t function, does not change our results qualitatively.

It will enter the equilibrium investment function linearly. Our �rst result describes �rms' investment

policies under Markov perfect solution.

Proposition 1: For �rms k = i, j, i 6= j let Ki0, Kj0 ≥ 0 be their initial capacities at t = 0.

Assume that investment exhibits one period lead time and there are two demand states at

t = 1, namely u and d. Then the Markov perfect equilibrium investment strategies at t = 0

are:

Ik0 =


0 if qcku ≤ Kk0

(1 + g)(p̄− c− f/θ)
3

−Kk0 if qckd ≤ Kk0 < qcku

(1 + g)(p̄− c− f)
3(1 + g − θg)

−Kk0 if 0 ≤ Kk0 < qckd

(4)

Proof: See the Appendix.

Observe that investment decisions of the �rms change with respect to the model parameters

and initial capacities. Firm investments would be identical if their initial capacities were the same.

This, in turn, implies that there is no asymmetric equilibrium investment strategy pro�le as long

as �rms start with identical initial capacities. Note that in a similar capital accumulation model

Garcia and Shen (2010) assumed symmetric �rms and symmetric Markov perfect equilibrium. Under

these assumptions our investment policies, when both �rms invest, boil down to their main result

in Theorem 1.4

In Pacheco-de-Almeida and Zemsky (2003) time-to-build creates �initial price premium�. The

price premium is the ratio of di�erence of initial price and �nal price to �nal price. Firms initially

produce from ex ante investment which is lower than Cournot output and therefore the initial price

is high. Ex post investments come online and price declines. On the other hand, in our setting all

investments with time-to-build are made under uncertainty. However, the initial price premium can

occur in our model, when demand does not go up in the next period. The total output expands

3Instead of writing 1u (1d) to represent the upstate (downstate) in period 1, we simply write u (d).
4The Figures 1, 3, and 4 representing regions in capacity states and equilibrium investment strategies in Garcia

and Shen (2010) will apply to our analysis of Markov perfect equilibrium with time-to-build.
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(price drops) due to investment made before uncertainty. However, there is no initial price premium,

if high demand unfolds.

It is clear that equilibrium investment quantity under the low initial capacity must be higher than

the investment under the high initial capacity. That is, when the initial capacity is low, satisfying

0 ≤ Kk0 < qckd, even it is smaller than Cournot output at the initial period, �rms will invest to

pro�t from future demand states. When the initial capacity is high, satisfying qckd ≤ Kk0 < qcku,

the equilibrium investment will be lower as �rms accumulate su�cient amount of capacity to meet

the highest possible level of future demand. The capacity utilization rate at the �nal period will be

100%.

When investment is positive, we �nd a �bang-bang� solution for production. That is, production

constraints bind and �rms operate at the capacity. This �nding is also consistent with Abel and

Blanchard (1986), and Zhou (2000) who emphasize that the product markets are often not perfect

and hence �rms may face binding output constraints. During high demand periods some �rms

often operate near their capacities in markets such as electricity production and hot spot industries.

Note that even in low demand periods some generators can operate at the capacity. For example,

nuclear plants generally operate near capacity, and wind turbines produce electricity at the maximum

utilization rate during windy fall season.

When the initial capacity is low, that is 0 ≤ Kk0 < qckd holds, the expected output in the �nal

period is E1b(q1) = (1 + g)(p̄ − c − f)/3(1 + g − θg) for both �rms. Although �rms start with

di�erent initial capacities and invest di�erent quantities, their expected outputs will be identical

because production and investment costs are the same for both �rms. When the initial capacity is

high, that is qckd ≤ Kk0 < qcku holds, the expected output in the �nal period becomes E1a(q1) =

[(1 + θg)(p̄− c)− (1 + g)f ]/3 for both �rms, because capacity constraint binds in the high demand

state and it is interior in the intermediate demand state. In this case, again expected outputs

and actual outputs in the �nal period will be the same for both �rms, as they have the identical

production and investment costs and both �rm investments only di�er in terms of initial capacities.

The following result examines asymmetric equilibrium investment case.

Proposition 2: Let �rm i be small capacity �rm whose initial capacity holds 0 ≤ Ki0 ≤ qciu and

�rm j be large capacity �rm with initial capacity satisfying Kj0 ≥ ((p̄ − c)(1 + g) − β)/2 =

(3qcju − β)/2, where β =
(1 + g)(p̄− c− 2f)

2(1 + g − gθ)
. Then �rm j does not invest and �rm i invests

(i.e., Ij0 = 0 ≤ Ii0). Markov perfect equilibrium investment strategies for �rm i are:
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Ii0 =


0 if qciu ≤ Ki0

(1 + g)[(p̄− c)− 2f/θ]
2

−Ki0 if qcid ≤ Ki0 < qciu

(1 + g)(p̄− c− 2f)
2(1 + g − gθ)

−Ki0 if 0 ≤ Ki0 < qcid

(5)

Proof: See the Appendix.

Under the conditions of Proposition 2 �rm j has a high initial capacity, and the small �rm

i increases its capacity based on the level of its initial capacity and the market parameters, but

independently of �rm j's capacity.

Observe that when �rm i's initial capacity is low, that is 0 ≤ Ki0 < qcid, it invests more relative to

the investment it undertakes when he starts with high initial capacity, that is qcid ≤ Ki0 < qciu. But

it does not invest (following its competitor), when its initial capacity is very high, that is qciu ≤ Ki0.

The investment made in the low initial capacity case will be totally used in the second period whether

demand turns out to be low or high. However, the investment made in the case of a high initial

capacity will only bene�t the high demand scenario, if it unfolds, otherwise this investment will be

futile. This is a risky investment because low demand market is possible in the end. However, the

�rm invests as if he would face the high demand market.

The equilibrium characterized in Proposition 2 is akin to Commitment equilibria of Pacheco-

de-Almeida and Zemsky (2003) in which the leader �rm invests and the follower does not invest

under uncertainty. This type of equilibrium emerges as Stackelberg equilibrium outcome in their

model. However, from the outset, we assume Cournot-Nash equilibrium approach in our model, and

Commitment-like equilibrium emerges just due to very asymmetric initial capacities of the �rms.

In Proposition 2 we have examined an asymmetric optimal investment pro�le when �rm i invests

and �rm j does not invest. It is possible to have another parameter region such that �rm i's initial

capacity is high and �rm j's initial capacity is low such that �rm i does not invest but �rm j invests.

In this case, the investment behavior of �rm j will be similar to the one for �rm i in Proposition 2. In

summary, either both �rms invest or one of them invests and the investment quantities will be based

on �rms' initial capacity levels. When they both invest we o�er the equilibrium characterization in

Proposition 1, and when one of them invests only we characterize the equilibrium in Proposition 2.
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5 Instantaneous Investment

This section explores investment behavior when �rms can instantly increase their production capac-

ities by either acquiring new production technologies or expanding capacities of the existing units

via refurbishing/maintenance. Investment is productive instantaneously and there is no (or signi�-

cant) lag between production and investment as opposed to the investment with lead time structure.

That is, time-to-build constraint is either negligible or non-existent. In this structure, �rms have an

option to postpone their investments in the �rst period, which is absent from the former structure.

However, for technical reasons (shown in the proofs) equilibrium computations can become harder

under this investment type.5

As an example, in the electricity generation industry some �rms can instantly expand their

production capacities via purchasing (small-scale) gas-�red generators, which are available in various

capacity sizes. Alternatively, a photo-voltaic technology (which converts sun lights into thermal

energy and then into kinetic energy) or a wind turbine (comprised of blades, gearbox, generator, and

tower) can easily be purchased from the energy equipment suppliers with various sizes of production

capacities (a modern wind generator can produce upto 5 MWh electricity). Investment into these

technologies can be regarded as instantaneous investment in which these technologies can become

productive instantly after they are installed or can take a minor lead time from investment stage (e.g.,

purchasing equipment) to the production process compared to other technologies such as nuclear

and hydro plants, which exhibit signi�cant lead times from investment to production stages.

Because today's decisions could impact future decisions and pro�tability we characterize Markov

perfect Nash equilibrium investment strategies under various market conditions. Therefore, we solve

the equilibrium problem backwards so that decisions are subgame perfect.

To examine the impact of instantaneous investment we �rst take a close look at one of the

periods, say initial period, to see how instantaneous investing is a�ecting the market outcomes. The

objective function of �rm i to be maximized at the initial period is

vi0 = qi0(p̄− qi0 − qj0 − c)− fIi0 + λi0(Ki0 + Ii0 − qi0),

where λi0 is a multiplier. If both �rms are constrained, that is their capacity constraints bind, then

5In a di�erent model Pacheco-de-Almeida and Zemsky, the case of instantaneous investment, which occurs when

the investment lag parameter is zero (T=0), is a special case of investment with time-to-build. Their model reduces

to two-period model, in which �rms can invest in two periods (before and after uncertainty) and production and sales

occur in the second period only.
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equilibrium investment strategies satisfy Ik0 = (p̄ − c − f)/3 − Kk0 for k = i, j, i 6= j. If �rm

i is constrained and �rm j's production is interior (and hence �rm j does not invest), then �rm

i's investment is equal to Ii0 = (p̄ − c − 2f)/3 − Ki0. If �rm i is constrained, and �rm j is also

constrained but does not invest, then �rm i's investment satis�es Ii0 = (p̄− c− f −Kj0)/2−Ki0.

If both �rms' productions are interior, then they do not invest and produce at Cournot output

qi0 = (p̄− c)/3 = qj0. This simple analysis indicates that if we increase the number of time stages,

the possible number of equilibrium investment strategies is going to increase.

Next we analyze the investment behavior when �rms compete in two periods in the market.

Let producer i's strategy be si = (Iit, qit), which is chosen as a solution to the problem:

max
si

E0

∑
t∈{0,u,d}

[Pt(Q)qit − cqit − fIit] (6)

subject to

0 ≤ qit ≤ Kit,

Kit = Kit−1 + Iit, Iit ≥ 0.

Although there are multiple MPE investment quantities over the capacity regions, the equilibrium

will be unique for a given parameter region. Namely, because we have three demand states (initial

demand in period 0, and up and intermediate state demands in period 1) and two possible solutions

in each state (interior output or constrained production) we have eight scenarios to consider for

equilibrium investment. Four types of investment pro�les can emerge as equilibria: a) Firm k

invests only in the initial period, Ik0 > 0, Iku = 0 = Ikd; b) Firm k invests in the �rst period and

the second period upstate demand, Ik0 > 0, Iku > 0, Ikd = 0; c) Firm k invests only in the upstate

node, Ik0 = 0, Iku > 0, Ikd = 0. d) Firm k does not invest at all, Ik0 = 0, Iku = 0, Ikd = 0. In

any investment pro�le, �rms never invest in the second period intermediate demand state. We will

examine all investment pro�les: �rms invest at the beginning or invest in the second period or invest

in both periods. We will analyze symmetric and asymmetric MPE strategies.

5.1 Committing to Initial Investment

This subsection analyzes equilibrium investment solutions for duopolists when they invest at time

zero only. Before examining investment pro�les, we ask the following question: why do �rms invest

now and utilize their investments now and in the future given that investment is instantaneous?
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We argue that this behavior could be related to, for instance, time constraints imposed by �rms'

other projects, instant growth incentives, managerial/shareholder pressure, and/or macroeconomic

conditions. Alternatively, it might be due to strategic reasons. For example, whether �rms are

symmetric or asymmetric in initial capacities, one �rm may emerge and invest right away to deter

the rival �rm's incentive to invest. Also, a �rm with small capacity may wish to invest right away

to be able to compete with a large rival �rm in the future high demand market. By investing earlier

small �rm can increase its size and send a signal to its competitor that it is a contender in the high

demand market (if unfolds) and will be able to increase its sales. If, however, intermediate market

materializes in the second period, the small �rm can expand its market share and increase its cash

�ow by investing earlier.

Among the reasons of why to invest now, mentioned above, the current model encompasses

macroeconomic conditions through demand growth and strategic reasons through commitment in-

centives. Other reasons are not directly observable in the model setting. If the initial capacity at the

outset is low, �rms have to invest in the initial period. In addition, they consider the future before

they choose the investment quantities in the beginning as it is likely that demand would go up in the

next period. Then one �rm could pre-commit to invest more at the beginning to be able to bene�t

from the current and the future states and would potentially become a market leader. But the other

�rm has the same objective and hence would follow the same suit. Therefore, both �rms would play

commit-commit strategies. This is what is captured in Proposition 3. On the other hand, one of the

�rms may choose not to commit any investment strategy and play stay put, because of its massive

initial capacity endowment. This business strategy is captured in Proposition 4.

Proposition 3: For �rms k = i, j, i 6= j let Ki0, Kj0 be their initial capacities at t = 0. Assume

that there are two states at t = 1 namely u and d. Then, the Markov perfect Nash equilibrium

initial investment strategies at t = 0 are:

Ik0 =


0 if qcku ≤ Kk0

(1 + g)(p̄− c− f/θ)
3

−Kk0 if qckd ≤ Kk0 < qcku

(1 + g)(2(p̄− c)− f)
6(1 + g)− 3θg

−Kk0 if 0 ≤ Kk0 < qckd

(7)

Proof: See the Appendix.

Since we have three demand states (0, u, d) and there are two possibilities (binding or interior)

for each state, eight scenarios emerge. We cover three of them in the above proposition and show
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that these three scenarios are part of the MPE. Other cases are not part of the equilibrium as we

explain next. The case of binding capacity in the initial state and interior solutions in the up and

intermediate states is not possible. To have this case hold, Kk0 + Ik0 < qck0 and Kk0 + Ik0 > qcku

and Kk0 + Ik0 > qckd must be satis�ed simultaneously. Obviously, it is a contradiction to have these

inequalities held because qck0 = qckd. Another case to be considered is the interior solution at time

zero, and binding capacity constraints in the up and intermediate states. But, Kk0 + Ik0 > qck0 and

Kk0 + Ik0 < qcku and Kk0 + Ik0 < qckd do not hold simultaneously for any admissible initial capacity.

There are other possibilities to consider: a) It is interior solution in the upstate and the constraints

are binding in the initial and intermediate states; b) It is only binding in the intermediate state,

and interior in other states; c) Constraints are not binding for all states under which the investment

quantity is clearly zero. Under these circumstances, it is not possible to have a positive investment

as the inequalities do not hold simultaneously.

Thus far we have examined symmetric MPE, the following proposition covers asymmetric equi-

librium investment strategies.

Proposition 4: Assume that investment is instantaneous. Let �rm i be small capacity �rm whose

initial capacity holds 0 ≤ Ki0 ≤ qciu and �rm j be large capacity �rm whose initial capacity

satis�es Kj0 ≥ ((p̄−c)(1+g)−γ)/2 = (3qcju−γ)/2, where γ =
2(1 + g)(p̄− c− f)

5(1 + g)− 2gθ
. Then �rm

j does not invest and �rm i invests (i.e., Ij0 = 0 ≤ Ii0), and the Markov perfect equilibrium

investment strategies for �rm i satisfy:

Ii0 =


0 if qciu ≤ Ki0

(1 + g)[(p̄− c)− 2f/θ]
2

−Ki0 if qcid ≤ Kk0 < qciu

2(1 + g)(p̄− c− f)
5(1 + g)− 2gθ

−Ki0 if 0 ≤ Ki0 < qcid

(8)

Proof: See the Appendix.

In this proposition �rm j does not invest due to its larger initial capacity. Comparing the

investment strategies when there is a lead time versus there is no lead time, we �nd that the outcomes

in Proposition 2 is same as the ones in Proposition 4, if the capacity constraints are binding only in

the demand growth (upstate) case. However, the investment policies are di�erent if the constraints

bind in all relevant states (as explained in Section 7 in detail).
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5.2 Delaying and Investing Later

This section examines equilibrium investment policies of competitors when they do not invest at the

outset but invest only at the second period which embeds the demand growth scenario. Note that

this investment scenario was not possible under time-to-build.

Proposition 5: Let �rms k = i, j, i 6= j start with initial capacities Ki0, Kj0 ≥ 0 at t = 0. Then

Markov perfect Nash equilibrium investment strategies at t = 1 are:

Iku =


(1 + g)(p̄− c− f)

3
−Kk0 if qckd ≤ Kk0 < qcku

0 if qcku ≤ Kk0

(9)

Proof: See the Appendix.

Note that in equilibrium both �rms produce the same level of output which is (1+g)(p̄−c−f)/3

no matter what their initial capacities or investment levels are.

5.3 Investing in All Periods

When investment is instantaneous, it is possible that �rms invest in all periods. Although this never

happens under time-to-build, this case has to be examined for the sake of completeness.6

In this subsection we will show that �rms will invest in both periods only if the initial capacity

is �very low�. Otherwise, they will invest once, either at the beginning or at the end of the period

such that they will follow the investment rules described in subsections 5.1 and 5.2 above.

Assume that initial capacity is very low such that it cannot even provide Cournot output in the

initial period. That is, it satis�es Kk0 < qck0. In this case �rms may choose to invest in both periods.

When they invest in both periods, their investments provide bene�t to all demand states. The pro�t

function that will be maximized, for �rm i, becomes

πi(.) = (Ki0 + Ii0)(p̄− c− (Ki0 + Ii0 +Kj0 + Ij0))− fIi0 + θπiu(.) + (1− θ)πid(.),

where the pro�t in the upstate is πiu(.) = (Ki0+Ii0+Iiu)(p̄−c−(Ki0+Ii0+Iiu+Kj0+Ij0+Iju)/(1+

g))−fIiu and the pro�t in the intermediate state is πid(.) = (Ki0+Ii0)(p̄−c−(Ki0+Ii0+Kj0+Ij0)).

The maximization of the total pro�t function with respect to the choice of upstate investment implies

∂πi(.)/∂Iiu = 0 for �rm i. Solving the same problem for �rm j, and then solving the investment

best response functions of both �rms simultaneously result in

6This issue has been raised by an anonymous referee.
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Iku(Ik0) =
(1 + g)(p̄− c− f)

3
−Kk0 − Ik0 for �rm k = i, j.

Next �rm i optimizes its total pro�t function with respect to its initial investment, that is

∂πi(.)/∂Ii0 = 0. This leads to (p̄ − c − f) − 2(Ki0 + Ii0) − (Kj0 + Ij0) + θ∂πiu(.)/∂Ii0 + (1 −

θ)∂πid(.)/∂Ii0 = 0, where ∂πiu(.)/∂Ii0 = [(p̄−c)(1+g)−2(Ki0 +Ii0 +Iiu)−(Kj0 +Ij0 +Iju)]/(1+g),

and ∂πid(.)/∂Ii0 = [(p̄ − c) − 2(Ki0 + Ii0) − (Kj0 + Ij0)]. Solving the same problem for �rm j,

and solving the best response investment functions simultaneously, and then inserting the value of

Iku(Ik0) lead to

Ik0 =
(p̄− c)(2− θ)− f(1− θ)

3(2− θ)
−Kk0 for �rm k = i, j.

Inserting this expression into the investment function above, the second period optimal invest-

ment for �rm k becomes

Iku =
(2− θ)[g(p̄− c)− f(1 + g)] + f(1− θ)

3(2− θ)
.

Di�erent than the investment at the initial period, the second period investment is irrelevant of

initial capacity level, but depends on the demand growth rate as well as other model parameters.

Note that �rms never invest in the intermediate state, as they already invested in the initial state,

which is identical to the intermediate state in terms of demand. The total investment quantity will

be Ik0 + Iku = (1 + g)(p̄− c− f)/3−Kk0.

We learn from the above analysis that if the initial capacity is too low (i.e., Kk0 < qk0), �rms can

invest in both periods. In this case all capacity constraints in all demand states will bind. This opens

the following question: do �rms invest in both periods if they start with somewhat intermediate level

of capacity (neither high nor low)? This corresponds to the capacity level Kk0 ≥ qck0 and Kk0 < qcku.

When we solve the problem expressed in (6) with this initial capacity level we �nd that �rms will not

invest in the initial period, but invest only in the second period upstate, if it unfolds. Algebraically,

we �nd that the KKT condition for �rm i is (∂Πi/∂Ii0)Ii0 = (−f+ρi0+ρiu+ρid)Ii0 = 0, where ρ′s are

the Lagrange multipliers for the states described in the subscripts. It will follow that ρi0 = 0 = ρid

because the investment made in the initial period will not be used neither in the initial state nor

in the intermediate state. However, ρiu > 0 will hold because investment made in the upstate will

be productive, and the total output will be equal to total capacity. Therefore, Ii0 = 0 will hold.

Consequently, this case will boil down to the investment behavior in subsection 5.2, where optimal

investment in the �nal period will be the one expressed in (9).

This analysis indicates that positive investments in both periods only occur when the initial

capacity is too low. Otherwise, �rms will either invest in period 0 (subsection 5.1) or invest in

period 1 (subsection 5.2).
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In the analysis of Pacheco-de-Almeida and Zemsky (2003) (AZ) for instantaneous investment

case, they state (in their Proposition 1) that �Firms never make incremental investments�. In our

analysis above, we show that this type of equilibrium is possible. This is because in their model

there is a stage in which �rms are allowed to make investment ex post. In our setting �rms can

make investment ex ante (which is the investment quantity at time zero) and this investment can

bene�t initial period demand as well as future demand which is uncertain at the time of decision

making. On the other hand, there is no demand at the initial period in AZ; therefore investment

will be carried out after it is certain that demand is positive.

Furthermore, in AZ there are two types of equilibria (in their Proposition 1) when investment is

instantaneous: Delay equilibrium and Commit-delay equilibrium. Their Delay equilibrium (i.e., both

�rms wait and invest after the resolution of uncertainty) is same as our investment characterization

in Proposition 5, in which �rms invest right after they �gure out that they are at the high demand

state. Their Commit-delay equilibrium (in which the leader �rm invests at the outset and the

follower �rm delays and invests in the �nal period) occurs when uncertainty is not too great (demand

uncertainty parameter is su�ciently high). In this case cost of investing early is less than the bene�t

of committing. In our setting, by modeling choice (i.e., Cournot-Nash equilibrium concept) we do

not have Commit-delay type equilibrium. In AZ, �rms neither make incremental investments nor

carry out ex-ante investments simultaneously. However, these types of equilibria are possible in

our setting (in our incremental investment analysis above and Commitment type investment in our

Proposition 4).

6 Socially Optimal Investment

In this section we investigate whether duopoly investment strategies would be di�erent than social

optimum, which is obtained by solving the social planner's problem through maximizing expected

sum of welfare (consumer surplus less production and investment costs). We will analyze the invest-

ment behavior with and without time-to-build constraint.

When the investment is subject to time-to-build, the planner chooses outputs and investment to

solve the following problem:
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max E0

∑
t

[ˆ qt

0
Pt(q)dq − cqt − fIt

]
s.t. 0 ≤ qt ≤ Kt

It ≥ 0

Kt+1 = Kt + It

In the two-period planning, the optimality conditions are

q0 = p̄ − c for the initial output, −f + λu + λd = 0 for the investment, θ(p̄ − c − qu/(1 +

g)) = λu for upstate output, and (1 − θ)(p̄ − c − qd) = λd for intermediate state output. If

the production constraints are binding in the upstate only, then the optimal investment will be

I0 = (1 + g)(p̄− c− f/θ)−K0. If the constraint is binding in both states, then the investment will

be I0 = (1 +g)(p̄− c−f)/(1 +g(1−θ))−K0. Otherwise, there is no investment. When we compare

these investment pro�les to the ones in Proposition 1, it is clear that duopolists underinvest relative

to social optimum, independent of status of the capacity constraints. Because, i) under the MPE

the total investment in Proposition 1 is 2(1 + g)(p̄ − c − f/θ)/3 − Ki0 − Kj0, which is less than

I0 = (1+g)(p̄−c−f/θ)−K0, where K0 = Ki0 +Kj0, when the investment is bene�ting the upstate

demand only; ii) the total MPE investment is 2(1 + g)(p̄− c− f)/3(1 + g − θg)−Ki0 −Kj0, which

is less than the e�cient investment (1 + g)(p̄− c− f)/(1 + g(1− θ))−K0 when investment provides

bene�ts to both up and intermediate demand states in period 1.

On the other hand, when the investment is instantaneous or does not exhibit a signi�cant lag

between investment and production the analysis of optimum investment is as follows. The planner

chooses all outputs and investment to maximize the total welfare similar to the above analysis.

When investment is carried out in the initial stage only, similar to the time-to-build investment

analysis above, the optimality conditions satisfy:

(p̄−c−q0) = λ0 for the initial output, −f+λu+λd+λ0 = 0 for the investment, θ(p̄−c−qu/(1+

g)) = λu for the upstate output and (1 − θ)(p̄ − c − qd) = λd for the intermediate state output.

If the production constraints are binding in the upstate only, then the optimal investment will be

I0 = (1+g)(p̄−c−f/θ)−K0. If the constraint is binding in both up and intermediate states at time

1, then the e�cient investment will be I0 = (1 + g)(2(p̄− c)− f)/(2(1 + g)− θg)−K0. Otherwise,

there is no investment. Comparing these optimum investment strategies to the ones under the MPE

in Proposition 3, it is clear that duopolists underinvest.

Then we obtain the following result:
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Proposition 6: Whether investment is instantaneous or subject to a lead time, �rms' total invest-

ments under the MPE are lower than socially optimum investment.

7 The Role of Investment Types

This section compares the investment outcomes based on the investment types (instantaneous vs.

time to build). As the propositions 1-5 show, depending on the initial capacity levels of �rms,

investments made under uncertainty will be productive either in upstate only, or in both initial state

and upstate, or in all demand states. One of these investment strategies will unfold based on the

parameter regions de�ned in the previous sections. In each case, we observe some common investment

characteristics: investment is decreasing in initial capacity, production and investment costs, and

increasing in demand uncertainty. If �rms start with large capacity endowments, they may not invest

at all or invest little, depending on demand conditions. In the limit, if the initial capacity is in�nity,

there is no need for investment. In all propositions the rate of change of investment strategy with

respect to initial capacity is negative. Also, in all propositions the rate of change of investment with

respect to investment cost or production cost is negative. Firms tend to invest less when investment

costs increase. As the investment quantity is going to be used for production, production cost will

also negatively impact the investment. Therefore, higher production and investment costs will lead

to lower investments. Also, as explained in detail in Section 8, the derivative of investment strategy

with respect to uncertainty (represented by θ, the probability of demand growth) is always positive.

This is because favorable resolution of uncertainty implies higher θ which implies higher expected

demand and therefore higher investment.

When we rank these investment quantities we �nd that the highest level of investments occurs

when investment provides bene�t to all demand states (0, u, d), and the lowest level occurs when it

only provides bene�t to the upstate. The intuition for this result is that for a given level of demand,

lower initial capacity entails into higher investment quantity. Although the investment quantity

is the largest when the capacity constraints are binding in all states, the outputs are lower than

Cournot outputs. Similarly, if the capacity constraint is binding only in the upstate then initial and

intermediate state outputs are at their Cournot output levels. Hence, prices (in all states) will be

the lowest when the investment is positive and at its lowest level. This is due to the fact that the

initial capacity is high and investment provides bene�t to upstate only, hence consumers enjoy lower

prices because of high initial capacities. An implication of this �nding in electricity markets context

23



is that excess reserve capacity or installed capacity becomes necessary to depress prices and smooth

price hikes.

When investment is subject to a time-to-build, we have seen that investment occurs only once

in the two-period model. Depending on the initial capacity level of a �rm, the investment will be

productive either at the high demand state or at all states in the second period (Proposition 1).

However, when investment is instantaneous investment choices are rich such that �rms can either

invest at the initial period (Proposition 3), or in the �nal period (Proposition 5), or in both periods

(subsection 5.3).

We �nd in subsection 5.3 that �rms invest in both periods only if their initial capacity is too low

(i.e., lower than Cournot output). Otherwise, �rms invest only once (either in the initial period or in

the �nal period). When �rms invest in both periods the total investment for �rm k, as characterized

in subsection 5.3, is (1+g)(p̄−c−f)/3−Kk0. On the other hand, the investment with time-to-build

is (1 + g)(p̄ − c − f)/3(1 + g − θg) − Kk0 in Proposition 1 when investment bene�ts all demand

states in the second period. Comparing these investment quantities, clearly the total investment

when there is no time-to-build is higher than the investment when there is time-to-build. Note

that this comparison holds for a small parameter region in which the initial capacity is too low

(0 ≤ Kk0 < qck0). This is not a surprising result because of the technological advantage of having

the ability of investing instantly. Since �rms start with low initial capacities, they invest at the

beginning so as to meet the current and the future demand. In the second period they will keep

investing to further bene�t from the demand growth.

Nevertheless, when the investments made just once under both investment types, we com-

pare Proposition 1 (time-to-build) to Proposition 3 (instantaneous). We observe that equilib-

rium investments are equal if it is bene�ting upstate demand only. This investment quantity is

(1 + g)(p̄− c− f/θ)/3−Kk0. However, when investment made only once and investment provides

bene�t to all (relevant) demand states, (up and intermediate demand states) in Proposition 1 we

have (1 + g)(p̄− c− f)/3(1 + g − θg)−Kk0, which is higher than the instantaneous investment in

Proposition 3 which equals (1 + g)(2(p̄ − c) − f)/(6(1 + g) − 3θg) − Kk0, if the marginal cost of

investment is lower than a bound: f < (θg(p̄− c))/(1 + g).

Consequently we obtain the following result.

Theorem 1: The ranking of investment quantities with respect to investment types mainly depends

on the initial capacity levels. In particular, when investment is instantaneous and �rms start

with low initial capacities, they can invest every period and their total investments will be
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higher than the ones observed under time-to-build constraint. Firm investments will be iden-

tical under time-to-build and no time-to-build, if �rms invest once and this investment only

bene�ts the upstate demand. On the other hand, instantaneous investment quantity could be

lower than time-to-build investment, if the marginal cost of investment is very low. Also, the

ranking of outputs and consumer surplus will follow from the ranking of investment quantities.

Note that instantaneous investment encompasses richer set of equilibrium investment strategies.

Investment can be postponed and made after uncertainty unfolds. Firms can invest at the beginning,

at the end, or in both periods. Also, it can bene�t more demand states. Therefore, the number of

equilibria is higher under instantaneous investment than under investment with time lag.

When �rms are asymmetric in investment choices, that is while one �rm invests the other does

not, we �nd (by comparing investment policies in Propositions 2 and 4) that under time-to-build

constraint the �rm's equilibrium investment (weakly) exceeds the investment under no time-to-build.

It is notable that investment decisions under time-to-build (Propositions 1 and 2) or instanta-

neous investment (Propositions 3 and 4) are both subject to the same demand uncertainty. Invest-

ment decision in the initial period Ii0 under both structures is made before the realization of demand

states in the following period. In the former investment will be used in the following period, while

in the latter investment will be used both at the initial and �nal periods.

Theorem 1 is also consistent with Proposition 7 in Pacheco-de-Almeida and Zemsky (2003) who

�nd that social welfare falls in time-to-build, because �rms cannot respond fast to the arrival of

information about demand. But this result is not general and does not hold for some equilibria

and parameter con�guration. In particular, the e�ect of time-to-build on welfare reverses �If an

increase in time-to-build creates Commitment equilibrium, then welfare can increase� for certain

model parameter combination (see their p.177). We have a similar �nding of market performance

ranking with and without time-to-build changing with respect to parameter regions (initial capacity

levels and investment costs).

8 The Impact of Uncertainty

We observe from demand uncertainty formulation in expression (1) that at time 0 the initial demand

is Q0 = p̄ − P0. At time 1 demand will be either Q1 = (p̄ − P0)(1 + g) with probability θ or

Q1 = (p̄ − P0) with probability (1 − θ). The expected demand at time 1 is (p̄ − P0)(1 + θg) which

is increasing in uncertainty θ. The variance of demand is (p̄ − P0)2g2θ(1 − θ) which is increasing
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in θ for θ < 1/2 and decreasing in θ for θ > 1/2. Clearly demand variability becomes zero at

θ = 0, and expected demand is the highest as θ approaches one. Favorable resolution of uncertainty

implies higher θ which implies higher expected demand and therefore should imply higher investment.

Alternatively, increase in θ makes the upstate demand more likely, and therefore investment made

under uncertainty becomes less risky.

Based on the analyses of equilibrium investments with and without investment lag above, we will

examine the e�ect of uncertainty on investment. In the model θ, the probability of demand growth,

captures demand uncertainty.7

When investment is subject to time-to-build, from Proposition 1 we observe that θ impacts

the investment strategies di�erently, depending on the initial capacity levels. The derivative of the

investment function with respect to θ, when the initial capacity is low, is g(1+g)(p−c−f)/3(1+g(1−

θ))2 > 0, and it is, when the initial capacity is high, (1 + g)f/θ2 > 0. Clearly, these derivatives are

positive and implying that investment increases as upstate demand becomes more likely. Moreover,

the rate of change of investment with respect to uncertainty has di�erent magnitudes, depending on

the initial capacity level. In particular, when the initial capacity is low so that investment bene�ts

all demand states in the future period, the rate of change of investment is impacted by all model

parameters, including the price cap, and marginal costs of production and investment. However,

when it is high so that only high demand state bene�ts from the investment, the rate of change of

investment is impacted by only the growth rate, the marginal cost of investment, and the likelihood

of high demand state. These �ndings are also valid when �rms are very asymmetric in terms of

initial capacities (in Proposition 2).

When investment is instantaneous, we obtain the same qualitative results as in time-to-build

case. When investment is made only in the initial period (Proposition 3) or in the both periods

(subsection 5.3), the (initial) investment increases in uncertainty and its rate of change with respect

to uncertainty varies depending on the level of initial capacity. The only di�erence is what happens

in the �nal period when investment is made in both periods. The uncertainty will not directly

impact value of the second period investment. After the initial investment is made, �rms will invest

in the second period as soon as the high demand state unfolds. This is clear from the equilibrium

relation Iku(Ik0) = (1 + g)(p̄ − c − f)/3 − Kk0 − Ik0 in subsection 5.3. However, as the value of

the random variable impacts the initial investment, it will indirectly impact the quantity of second

7In Pacheco-de-Almeida and Zemsky (2003), the probability of positive demand (their parameter a) represents

uncertainty.

26



period investment. Consequently, the higher uncertainty (θ) will increase the quantity of initial

investment, which in turn will decrease the quantity of �nal period investment.

Next we compare the e�ect of uncertainty on investment with and without investment lag. When

we compare the investment strategies in Propositions 1 and 3, we observe that the investment quan-

tities are the same when the initial capacity is high, and they are di�erent when the initial capacity is

low. Therefore, the impact of uncertainty would be same whether investment exhibits time-to-build

or not, if the initial capacity is high. However, the uncertainty will impact the investment decisions

di�erently when the initial capacity is low. Speci�cally, the explicit impact of demand uncertainty is

as follows. The derivative of investment quantity with respect to θ, under time-to-build (superscript

t2b), is

∂It2bk0 /∂θ = (1 + g)g(p− f − c)/3(1 + g − gθ))2 > 0

and it is

∂Iinstk0 /∂θ = (1 + g)g(2(p− c)− f)/3(2(1 + g)− θg)2 > 0

under instantaneous investment (superscript inst). The ratio of these derivatives is (∂It2bk0 /∂θ)/(∂I
inst
k0 /∂θ) =

(p− f − c)(2(1 + g)− θg)2/(2(p− c)− f)(1 + g− gθ)2. Denote this ratio ε, which is higher than 1 if

and only if (1+g)2[2(p−c)−3f ]−θ2g2[p−c]+(1+g)θg[2f ] > 0. Clearly, the coe�cient of the term

in the �rst bracket is always higher than the coe�cient of the second one, that is (1 + g)2 > θ2g2.

The third term is always positive. Then it is su�cient to have the relation p− c > 3f between the

marginal costs and the price cap so that the summation of all terms in the above inequality becomes

always positive. Therefore, the increase in uncertainty can have a larger impact on investment with

time-to-build than investment without time-to-build.

The following theorem summarizes the impact of uncertainty on investments with and without

time-to-build.

Theorem 2: The equilibrium investment with or without time-to-build increases in uncertainty.

Depending on the initial capacity, the rate of change of investment with respect to uncertainty

can be the same or di�erent under both types of investments. Speci�cally, if the initial capacity

is high (so that investment will become productive in upstate demand only), then the impact

of uncertainty on investment strategies is identical for both investment types. If the initial

capacity is low (so that investment will provide bene�t to all relevant demand states), the e�ect
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of uncertainty on investment with time-to-build can be higher than the one with instantaneous

investment.

For a given value of θ, we can also measure the impact of demand growth rate g on investment.

The rate of change of investment strategy with respect to demand growth rate is always positive for

investments with and without lag. However, their explicit impacts could be di�erent. When initial

capacity is high the rate of change of investment with respect to g is equal to (p − c − f/θ)/3 > 0

whether investment is subject to time-to-build (Proposition 1) or it is instantaneous (Proposition

3). When initial capacity is low, the derivative of investment with respect to growth rate equals

θ(p− c− f )/3(1 + g(1− θ))2 > 0 with time-to-build, and it is θ(2(p− c)− f )/3(2(1 + g)− θg)2 > 0

without time-to-build. Clearly, the impacts of growth rate are di�erent and one can be greater than

the other for a given parameter range.

9 Extensions

Hitherto we have examined two-period competition setting with and without lead time using Markov

perfect equilibrium concept. In this section as a robustness check we will extend the competition

setting to three periods and analyze investments under open-loop Nash equilibrium (OLNE) concept,

which is commonly used in the deterministic dynamic games literature. The di�erence between

OLNE and MPE will give the strategic value of investment. Speci�cally in subsection 9.1 we will

compare and contrast Markov perfect investment strategies to open-loop Nash equilibrium outcomes.

We will show that Markov perfect investment solution coincides with open-loop counterpart under

certain conditions, independent of the investment type (instantaneous or not). However, we also

pinpoint the conditions under which they predict di�erent investment pro�les in subsection 9.2.

In subsection 9.3, we will extend the time stages to three and examine implications of investment

opportunities over time.

9.1 Open-loop Nash Equilibrium (OLNE) Investment Solution

This section examines OLNE investment outcomes under uncertainty with and without time-to-

build constraint. Open-loop approach is generally employed as a benchmark case to di�erentiate

the strategic investment. Although OLNE may not be subgame perfect in general, equilibrium
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computations can be tractable and simpler with appropriate reformulation.8

We show that open-loop solution can be equal to Markov perfect one for some capacity levels that

we identify. In addition, we note that open-loop equilibria can be used in a moving-horizon approach

to approximate a Markov perfect (or closed-loop) equilibrium (see van den Broek (2002)). The

principle is simple: At each period t, the players determine the open-loop Nash-equilibrium strategies

for a given T -period planning horizon. However, only the initial control action is implemented. At

period t+1, the players again compute the equilibrium strategies for the next T periods, implement

the (new) initial action, and so on. The resulting moving-horizon equilibrium trajectories constitute

an approximation of the closed-loop equilibrium trajectories that would have been obtained at the

outset of the dynamic game. Moreover, preemptive investment (open-loop concept) could be an

optimum strategy for a �rm if its rival chooses the investment strategy at the outset of the game.

Similar to the open-loop concept, in the wholesale electricity markets the traders regularly employ

�xed-mix investment strategies for power portfolio optimization (Sen et al., 2006). Further, some

studies found that open-loop equilibria have some empirical support. For instance, Haurie and

Zaccour (2004) compared the predicted open-loop equilibrium strategies to the realizations in the

European gas market, and found that they are close.

9.1.1 OLNE with Lead Time

Proposition 7: When the capacity investment is subject to one period time-to-build constraint,

under the conditions of Propositions 1 the investment policies with Markov perfect information

are identical to those with open-loop information.

Proof: See the Appendix.

For various initial capacity combinations the OLNE investment policies coincide with the MPE

outcomes in this two period game, because there is one time investment opportunity. In fact, there

8As noted by an anonymous referee that the notion of open-loop strategy could be more challenging when one

introduces uncertainty. Haurie and Zaccour (2004) formulated open loop solution under uncertainty. They named this

equilibrium as S-adapted (sample adapted) open-loop Nash equilibrium. With S-adapted open-loop information, at

any time each player's information set includes the current calendar time, the current demand state, the distribution

of future demand, and the initial values of capacity states. Genc et al. (2007) extended this equilibrium concept using

stochastic programming approach and Genc and Sen (2008) applied it to oligopolistic Ontario wholesale electricity

market model to solve for power �rms' investment and production decisions under uncertainty using actual market

data. Genc and Zaccour (2013) examined the market performance of open-loop behavior relative to closed-loop and

Markov perfect solutions in a duopolistic market under uncertainty.
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is no impact of initial investment on the future investment, and the strategic impact of one player's

investment on the other (namely ∂Iju/∂Ii0) is zero under both information structures. This is

because the capacity constraints of both players are binding which creates corner solutions of the

outputs, and the productions will be equal to the available capacities of the players. Therefore, a

�rm will not be able to a�ect its rival's output through its investments.9

9.1.2 OLNE without Lead Time

The following proposition describes the OLNE investment solution when �rms are able to increase

their production capacities without a (signi�cant) delay.

Proposition 8: When the capacity investment is instantaneous, under the conditions of Proposition

3 open-loop investments are equal to Markov perfect investments.

Proof: See the Appendix.

In the following proposition we will cover the market condition such that in equilibrium �rms

choose to investment in the �nal period only.

Proposition 9: Assume that investment is instantaneous and both �rms invest at the high demand

state u. Then open-loop investments are equal to Markov perfect investments.

Proof: See the Appendix.

The intuition for this result is that there is no future after the second period and the initial

period decisions have no impact on the future pro�ts because no investment is carried out at the

outset of the game.

9.2 Asymmetric Outcomes

This section shows how Markov perfect predictions di�er from the open-loop counterpart. The

following proposition deals with asymmetric capacity constraints which will result in an investment

rule that exhibits di�erences between equilibrium predictions.

Proposition 10: Whether investment is instantaneous or subject to a lead time, if the �rms' initial

capacities are asymmetric (as in the Propositions 2 and 4), then Markov perfect investment is

higher than the open-loop investment.

9As pointed out by an anonymous referee considering risk aversion in �rm's objective function may lead to inter-

esting di�erences between the open-loop and Markov perfect equilibrium results. This could be an interesting future

research direction.
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Proof: See the Appendix.

Based on the information structure (Markov perfect versus open-loop) the market equilibrium

investment predictions show di�erences as long as �rms are asymmetric in terms of their capacity

status. In particular, if one �rm's capacity constraint is binding (because of small capacity) and

other �rm's is not (due to large capacity) then Markov perfect investment will always be higher than

open-loop investment. This result will hold for either type of investment (instantaneous or not).

With time-to-build, the di�erence between the OLNE and MPE investments stems from the

impact of initial investment on the next period rival output. Under Markov perfect structure, �rm

i invests more (than open-loop) to reduce �rm j's next period output. In the open-loop equilibrium

�rm i has no such incentive; it makes investment just to bene�t from high demand state in the

second period. Similar reasoning follows with instantaneous investment.

If we were to extend the game to three stages, the di�erence between these equilibrium investment

strategies would spring from the e�ect of �rst stage investment on the second stage one. This impact,

∂Iiu/∂Ii0, is zero in the OLNE and it is minus one in the MPE, which will generate the di�erences

in equilibrium predictions. The source of this di�erence can be traced by backward solution of the

MPE.

9.3 Extension to Three Periods

In this section we extend the basic investment model with lead time to three periods and characterize

MPE investment strategies. Incremental investments under time-to-build is a novel equilibrium (see

Pacheco-de-Almeida and Zemsky, 2003). We will show that our main results in the two-stages can

be extended to three-stage version of the game for certain parameter regions.

The extension of demand function to three stages (t = 0, 1, 2) produces more demand states and

slope of the inverse demand in the last period will be

σt=2 =


σ0/(1 + g)2, with probability θ2

σ0/(1 + g), with probability 2θ(1− θ)

σ0, with probability (1− θ)2
(10)

The four stages in the �nal period are up-up, up-intermediate, intermediate-up, and intermediate-

intermediate states.

Di�erent than Garcia and Shen (2010) who focus on one time investment strategy pro�le (which

they call �stationary Markovian investment strategies�, on page 33, which is the outcome that is
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obtained in our two-period model formulation), we o�er a dynamic investment strategy pro�le for

�rms who invest more than once under time-to-build constraint. Therefore, we will be able to trace

the impact of strategic investment in a given period on both the �rm's and its rival's investments in

the following period.

In the two period version of the game we obtained multiple equilibria depending on the initial

capacity. Increasing the number of time stages to three will further raise the possible number of

equilibria. At time t, the number of demand states is 2t, and there are 3 possible capacity status at

each demand state (both players' capacities are binding, capacities are not binding, and one player's

capacity is binding and it is non-binding for the other). Then at the �nal period (t = 2) there are 81

possible equilibria (32t
), and at time 1 there are 9 possible equilibria. Hence, in the entire game the

total possible number of equilibria (including symmetric and asymmetric ones) is 2,187 (= 3∗32∗34).

If we were to extend this game to four periods, the total possible number of equilibria would be

14,348,907 (= 3 ∗ 32 ∗ 34 ∗ 38). This is so called "curse of dimensionality" issue, a known problem

for dynamic games with multiple states (i.e., demand and capacity). Characterization of all these

equilibria is beyond the scope of this paper. Even if we would concentrate on symmetric outcomes

only, equilibrium investments will be high degree polynomials of model parameters, and hence the

equilibrium comparisons would be non-tractable. A source of the complexity is that second period

investment will be a function of the �rst period investment and the capacity constraints might be

binding both at the �rst and second periods. With its current investment choice �rm i is able to

a�ect its future investment levels as well as the rival �rm's current and future investment levels.

These strategic interactions along with the binding production constraints have lingering e�ects

which would complicate equilibrium predictions. However, to be able to compare the two period

results to the three period ones, we will focus on a particular symmetric equilibrium strategy in

which �rms will only invest if they expect to see the highest demand scenario to be unfolded in

each period (this scenario is similar to the one analyzed in Proposition 1). This corresponds to the

equilibrium behavior such that �rms invest at the initial node in period 0 and the upstate node in

period 1. That is, we will characterize equilibrium at which capacity constraints will be binding only

at the highest demand scenarios in each time period so that Ik0 and Iku is positive. The equilibrium

analysis for other possible equilibria would be similar to the proofs of the following propositions.

Proposition 11: Assume a time-to-build constraint between investment and production. When

the competition is extended to three periods the MPE and OLNE investments coincide, if

production constraints bind only at the up-up (time 2) and the up (time 1) demand states for
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both �rms.

Proof: See the Appendix.

With time-to-build constraint we obtain the equilibrium investment equivalence result under

both types of information structures. However, we argue that the same result will apply under no

time-to-build. For the sake of briefness we skip the proof, as the mechanics of it will be the same.

Note that we have already proved the investment equivalence result in Propositions 1 and 3 when

the production constraints were binding only at the up-state.

As shown in the Appendix, the total investments under both information structures will be

identical. Hence the players will produce at the same amounts at the highest possible demand

scenario where production constraints will bind and they produce at the capacity. Firms will totally

utilize their initial investments as well as the �nal investments in each production stage. Moreover,

while the equilibrium initial investment will be a function of the initial capacity, the equilibrium

�nal investment will be independent of the initial capacity.

In Pacheco-de-Almeida and Zemsky (2003) it is endogeneity of the price premium that leads to

incremental investment (p. 172). The price premium is the ratio of di�erence of initial price and

�nal price to �nal price. The initial price is a function of the investment made under uncertainty.

Investment is low and hence initial price is high. The �nal price is a function of total investment

which is the summation of investments made before and after uncertainty. The total investment,

which is equal to total output, is higher than initial investment therefore the �nal price is lower.

Consequently, the price premium is positive. On the other hand, in the current paper it is the

uncertainty in demand growth that leads to incremental investment. Firms split their investments

across periods because of demand uncertainty. Prices are higher than Cournot prices due to lower

investments and binding capacity constraints.

For the social planner's problem, the planner has several investment opportunities under time-

to-build. There will be multiple equilibria (which will have similar characteristics to the two-period

planning), and hence below we will only examine optimum investments which will bene�t both up

and up-up states. A sketch of proof of the following result is presented in the Appendix.

Proposition 12: The social planner invests more than the duopolists in the three period version

of the game.
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10 Concluding Remarks

While traditional investment models have mainly focused on instantaneous investment decisions

from a single �rm's perspective, we examine strategic investment decisions in competition settings.

We characterize and analyze investment strategies of �rms in markets with di�erent investment

structures, investment with lead time (or investment under time-to-build) and investment without

lead time (or instantaneous investment), in the presence of capacity constraints and uncertainty. In

broader terms, comparison of these investment types boils down to comparing �progressive industries�

in which time-to-build is long and signi�cant relative to the �fast-paced industries� where time-to-

innovate or -build (and then making the products available to the customers) is short. In these

terms, a more indirect instance could be that time-to-build would concern industries with heavy

R&D process such as designing and making e�cient computer chips, operating systems, or airplanes,

and the instantaneous investment model would encompass high-tech industries such as cell-phone

or personal computer producers.

We compare �rms' capital investment behavior based on the investment types and information

structures. We �nd that for a given investment type equilibrium investment predictions di�er across

the information structures as long as �rms are asymmetric in terms of capacity constraints. In

particular, if one �rm's capacity constraint is binding and other �rm's is not then Markov perfect

investment will always be higher than the open-loop investment. These results will follow when the

game is extended to three periods.

We o�er some new results. The impact of lead time on capital investments is that controlling for

demand, and production and investment costs, we determine the conditions under which investments

and outputs are higher in progressive industries and the conditions under which they are higher in

fast-paced industries. Also, for both investment types (investment with or without time-to-build)

we o�er a novel equilibrium in which �rms incrementally invest. This behavior is driven by demand

uncertainty and capacity constraints. Moreover, in contrast to previous �ndings, expected outputs

are lower than Cournot outputs as �rms face uncertainty. In addition, the amount of uncertainty

has di�erent e�ects on investment types.

We examine both two- and three-period versions of the model and �nd the same impact of

time-to-build constraint on social welfare. Therefore, we argue that this �nding would generalize

if we were to extend the model to T �nite periods. However, due to the tree structure of demand

uncertainty and the status of the capacity constraints (binding or not), the number of equilibria will

34



explode, as we explain in the extensions section.

There are several possible future research directions. It would be interesting to explore the

dynamics of equilibrium investments when �rms employ technologies with di�erent lengths of time-

to-build. This is because the length of time-to-build may create additional source of uncertainty for

decision makers. Also, risk consideration could be an important aspect for capital investments. One

could assume risk-averse �rms instead of risk-neutral �rms in the market. Considering risk aversion

in �rm's objective function may lead to interesting di�erences between the open-loop and Markov

perfect equilibrium results.

References

[1] Abel, A., O. Blanchard, 1986. The Expected Present Discounted Value of Pro�ts and the

Cyclical Variability of Investment, Econometrica, 54, 2, 249-272.

[2] Aïd, R., S. Federico, H. Pham, B. Villeneuve, 2015. Explicit investment rules with time-to-build

and uncertainty, Journal of Economic Dynamics & Control, 51, 240-256.

[3] Bar-Ilan,A., A. Sulem, A. Zanello, 2002. Time-to-build and capacity choice, Journal of Eco-

nomic Dynamics & Control, 26:69-98.

[4] Boca, A.D, M. Galeotti, C. Himmelberg, P. Rota, 2008. Investment and time to plan and build:

a comparison of structures vs. equipment in a panel of Italian �rms, Journal of the European

Economic Association, 6, 4, 864-889.

[5] Breton, M., R. Jarrar, G. Zaccour, 2006. A Note on Feedback Stackelberg Equilibria in a

Lanchester Model with Empirical Application, Management Science, 52, 5, 804-811.

[6] Cellini, R., L. Lambertini, 1998. A Dynamic Model of Di�erentiated Oligopoly with Capital

Accumulation�, Journal of Economic Theory, 83, 145-55.

[7] Chen, P.Y. 2012. The Investment Strategies for a Dynamic Supply Chain under Stochastic

Demands, Int. J. Production Economics, 139, 80�89.

[8] Chevalier-Roignant, B., C. Flath, A. Huchzermeier, L.Trigeorgis, 2011. Strategic investment

under uncertainty: A synthesis, European Journal of Operational Research 215, 3, 639-650.

[9] Dixit, A., 1980. The Role of Investment in Entry-Deterrence, Economic Journal 90, 95-106.

35



[10] Dockner, E.J., S. Jørgensen, N. Van Long, G. Sorger, 2000. Di�erential Games in Economics

and Management Science, Cambridge University Press, Cambridge, UK.

[11] Figuières, C., 2009. Markov interactions in a class of dynamic games, Theory and Decision 66,

39-68.

[12] Fruchter, G. E., S. Kalish, 1997. Closed-loop advertising strategies in a duopoly, Management

Science, 43, 54�63.

[13] Garcia, A., J. Shen, Equilibrium Capacity Expansion under Stochastic Demand Growth, Oper-

ations Research, 2010.

[14] Garcia, A., E. Stacchetti, 2011. Investment Dynamics in Electricity Markets, Economic Theory

46, 2, 149-187.

[15] Genc, T.S., 2012. Equilibrium Predictions in Wholesale Electricity Markets, A. Sorokin et al.

(eds.), Handbook of Networks in Power Systems I, Energy Systems, DOI 10.1007/978-3-642-

23193-3_10, Springer-Verlag Berlin Heidelberg, pp.263-279.

[16] Genc, T.S., S. Reynolds, S. Sen, 2007. Dynamic Oligopolistic Games under Uncertainty, Journal

of Economic Dynamics and Control 31, 55-80.

[17] Genc, T.S., S. Sen, 2008. An Analysis of Capacity and Price Trajectories for the Ontario

Electricity Market Using Dynamic Nash Equilibrium under Uncertainty, Energy Economics,

30(1): 173-191.

[18] Genc, T.S., G. Zaccour, 2013. Capacity Investments in a Stochastic Dynamic Game: Equilib-

rium Characterization, Operations Research Letters, 41 (5), 482-485.

[19] Grenadier, S. R., 2000. Equilibrium with Time-to-Build: A Real Options Approach, in M. Bren-

nan and L. Trigeorgis (eds.), Project Flexibility, Agency, and Competition, Oxford University

Press, Oxford.

[20] Grenadier, S.R., 2002. Option Exercise Games: An Application to the Equilibrium Investment

Strategies of Firms, Review of Financial Studies, 15, 691-721.

[21] Hahn, G.J., H.Kuhn, 2012. Simultaneous Investment,Operations,and Financial Planning in

Supply Chains: A Value-based Optimization Approach, Int. J. Production Economics, 140,

559�569.

36



[22] Haurie, A. and G. Zaccour, 2004. S -Adapted Equilibria in Games Played over Event Trees: An

Overview, Annals of the International Society of Dynamic Games 7, 417-444.

[23] Kydland, F. E., Prescott, E., 1982. Time to Build and Aggregate Fluctuations. Econometrica,

50, 6, 1345-1370.

[24] Koeva, P., 2000. �The Facts About Time-to-Build�, International Monetary Fund, working paper

WP/00/138.

[25] Majd, S., R. Pindyck, 1987. Time to Build, Option Value, and Investment Decisions, Journal

of Financial Economics, 18, 7-27.

[26] Li, S., L. Wang, 2010. Outsourcing and capacity planning in an uncertain global environment,

European Journal of Operational Research, 207, 131-141.

[27] Long, N.V., K. Shimomura, H. Takahashi, 1999. Comparing open-loop with Markov equilibria

in a class of di�erential games, Japanese Economic Review 50, 4, 457-469.

[28] Pacheco-de-Almeida, G., P. Zemsky, 2003. The e�ect of time-to-build on strategic investment

under uncertainty, RAND Journal of Economics 34:166-182.

[29] Reynolds, S., 1987. Capacity Investment, Preemption and Commitment in an In�nite Horizon

Model, International Economic Review 28, 69-88.

[30] Sen, S., L. Yu, and T.S. Genc, 2006. A Stochastic Programming Approach to Power Portfolio

Optimization, Operations Research 54, 1, 55-72.

[31] Spence, A.M., 1979. Investment Strategy and Growth in a New Market, Bell Journal of Eco-

nomics, 10, 1-19.

[32] Swinney, R., G.P. Cachon, S. Netessine, 2011. Capacity investment timing by start-ups and

established �rms in new markets. Management Science, 57(4):763-777.

[33] van der Ploeg, F., A.J. de Zeeuw, 1990. Perfect equilibrium in a model of competitive arms

accumulation, International Economic Review 31, 1, 131-146.

[34] van den Broek, W.A. (2002). Moving Horizon Control in Dynamic Games, Journal of Economic

Dynamics & Control 26: 937-961.

37



[35] Yang, Z. (2003). Reevaluation and Renegotiation of Climate Change Coalitions�A Sequential

Closed-Loop Game Approach, Journal of Economic Dynamics & Control 27: 1563-1594.

[36] Zhou, C., 2000. Time-to-build and Investment, Review of Economics and Statistics, 82, 2, 273-

282

Appendix-Proofs

Proof of Proposition 1:

To characterize Markov perfect Nash equilibrium investment strategies we start with the �nal period

and solve the game backwards. The pro�t at the upstate (denoted �u�) for �rm i is πiu = (p̄− (qiu+

qju)/(1 + g) − c)qiu, and it is πid = (p̄ − (qid + qjd) − c)qid when demand stays the same (denoted

�d�). At the initial period �rm i chooses the initial investment and output to maximize current and

expected future pro�ts, πi(.) = (p̄− (qi0 + qj0)− c)qi0− fIi0 + θπiu(.) + (1− θ)πid(.) +λi0(Ki0− qi0).

There are several MPE investment strategies depending on whether constraints are binding or not

in the �nal period.

i) When initial capacity can meet demand in the intermediate (and initial) state(s) but comes

short to meet high demand in the upstate, that is qckd ≤ Kk0 < qcku holds, �rms �nd it pro�table to

invest at the outset to bene�t from high demand in the following period. Once investment is made

at time 0 and becomes productive at time 1, the upstate production constraint will bind for both

players. That is, investment will be fully utilized and hence no idle capacity will be left out.

The �rst order condition for output choice in the upstate is (p̄ − (2qiu + qju)/(1 + g) − c) = 0

for an interior solution. However, the output will be equal to the capacity as the constraint binds,

hence qiu = Ki0 + Ii0.

The objective function to be maximized at the initial period will be a function of the state

variables,

πi(.) = (p̄− σ0(qi0 + qj0)− c)qi0− fIi0 + θ[(p̄− (Ki0 + Ii0 +Kju + Ij0)/(1 + g)− c)(Ki0 + Ii0)] +

(1− θ)[(p̄− (qid + qjd)− c)qid + λi0(Ki0 − qi0).

The optimal investment at time 0 will satisfy
∂πi
∂Ii0

= −f + θ[(p̄− (2Ki0 + 2Ii0 +Kj0 + Ij0)/(1 + g)− c)] = 0, which results in

(1a) Ii0 = (1 + g)(p̄− c− f/θ)/3−Ki0,

Let α = (1 + g)(p̄− c− f/θ) be a constant, then Ii0 = α/3−Ki0.
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ii) When the initial capacity falls into the interval 0 ≤ Kk0 < qckd the investment made at time

0 will bene�t both up and intermediate demand states at time 1. In this low initial capacity case,

both up and intermediate state capacity constraints will bind for both players.

With the binding constraints the pro�t in the upstate will be viu(.) = (p̄ − (Ki0 + Ii0 + Kju +

Ij0)/(1 + g)− c)(Ki0 + Ii0), and the pro�t in the downstate will be vid(.) = (p̄− (Ki0 + Ii0 +Kju +

Ij0)− c)(Ki0 + Ii0).

The objective function to be maximized in the initial period as a function of state variables is

πi(.) = (p̄− σ0(qi0 + qj0)− c)qi0 − fIi0 + θviu(.) + (1− θ)vid(.) + λi0(Ki0 − qi0).

The derivative with respect to the optimal investment is
∂πi
∂Ii0

= −f+θ[(p̄−(2Ki0+2Ii0+Kju+Ij0)/(1+g)−c)]+(1−θ)[(p̄−(2Ki0+2Ii0+Kju+Ij0)−c)] = 0,

which results in

(1b) Ii0 =
(1 + g)(p̄− c− f)

3(1 + g − θg)
−Ki0. Similarly we obtain the investment strategy for �rm j,

Ij0 =
(1 + g)(p̄− c− f)

3(1 + g − θg)
−Kj0.

iii) On the other hand, if the initial capacity is high, that is qcku ≤ Kk0 then �rms do not invest in

equilibrium: the capacity is su�cient to meet the maximum (Cournot) output, and any incremental

investment will be idle at a positive cost. �

Proof of Proposition 2:

Given �rm j's production capacity �rm i′s investment will bene�t either upstate demand only or all

demand states in period 1. Firm i's equilibrium investment quantities are characterized in a) and

b).

a) Investment bene�ts upstate demand and hence only upstate production constraint binds for

�rm i .

The value function to be maximized in the initial period will be

vi0 = qi0(p̄− qi0 − qj0 − c)− fIi0 + θviu(Ii0, Ij0) + (1− θ)vid(Ii0, Ij0) + λi0(Ki0 − qi0),

where viu(Ii0) = (Ki0 + Ii0)(p̄ − c − (Ki0 + Ii0 + qju)/(1 + g)) is the pro�t in the upstate, and

the production quantities are qju = ((p̄− c)(1 + g)− qiu)/2, and qiu = Ki0 + Ii0.

Then viu(Ii0) = (Ki0 + Ii0)[p̄− c− (Ki0 + Ii0 + ((p̄− c)(1 + g)−Ki0 − Ii0)/2)/(1 + g)]

Also the pro�t expression in the intermediate state is
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vid(Ii0, Ij0) = qid(p̄− qid− qjd− c), and the interior outputs hold qid < Ki0 + Ii0, and qjd < Kj0.

The FOC dvi0/dIi0 = 0 yields,

−f + θ[(p̄− c)(1 + g)− 2(Ki0 + Ii0)]/2(1 + g) = 0. Then the solution will be

(2a) Ii0 =
(1 + g)(p̄− c)− 2f(1 + g)/θ

2
−Ki0.

b) As its initial capacity is �low�, �rm i's production is constrained, that is both up and inter-

mediate state constraints bind. Since �rm j 's initial capacity is �large� (de�ned below) it plays its

best response strategy. We optimize the investment choice for �rm i.

The objective function in the upstate becomes

viu(Ii0) = (Ki0 + Ii0)[(p̄− c)(1 + g)− (Ki0 + Ii0)]/2(1 + g)

In the intermediate state it becomes

vid(Ii0) = (Ki0 + Ii0)[(p̄− c)− (Ki0 + Ii0)]/2. Then the maximization of the objective function

for �rm i yields
∂πi
∂Ii0

= −f + θ[(p̄− c)(1 + g)− 2(Ki0 + Ii0)]/2(1 + g) + (1− θ)[(p̄− c)− 2(Ki0 + Ii0)]/2 = 0, and

qiu = Ki0 + Ii0 = qid, and qju = ((p̄ − c)(1 + g) − qiu)/2 and qjd = (p̄ − c − qid)/2. Then the

MPE investment for �rm i becomes

(2b) Ii0 =
(1 + g)(p̄− c− 2f)

2(1 + g − gθ)
−Ki0.

Note that the output of �rm j in the upstate will be qju = ((p̄ − c)(1 + g) − qiu)/2, where

qiu = Ki0 + Ii0. The highest level of output for �rm j in the upstate will be obtained when qiu is

the lowest, which happens when both up and intermediate state capacity constraints bind for �rm

i. This corresponds to qiu = (1 + g)(p̄− c− 2f)/2(1 + g− gθ) = β. We then obtain the upper bound

of the �rm j's initial capacity Kj0 ≥ ((p̄− c)(1 + g)− β)/2 = (3qcju − β)/2, which ensures that �rm

j never invests and produces at the interior output level. �

Proof of Proposition 3:

The MPE solution involves several equilibrium possibilities due to the capacity constraints: At

each decision stage (node on the demand tree) there are two possible outcomes; either production

is interior or constrained by the capacity. Since we have three demand states in the two periods,

we have eight output possibilities. However, only several of them are feasible and part of the

equilibrium behavior. The feasible investment scenarios will emerge under the following conditions:

i) All capacity constraints bind in the two periods; ii) The production constraints bind only in

the upstate demand; iii) The constraints never bind so that production is interior and there is no

investment. These cases are mutually exclusive and will result in di�erent investment strategies.
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Other scenarios such as binding constraints in the initial and the second period upstate demands

are ruled out because of contradicting capacity constraints.

The objective function to be maximized in the second period upstate demand for �rm i will be,

viu = qiu(p̄− (qiu − qju)/(1 + g)− c) + λiu(Ki0 + Ii0 − qiu).

In the second period intermediate state it will be,

vid = qid(p̄− qid − qjd − c) + λid(Ki0 + Ii0 − qid).

The conditions under which �rms only invest at the outset will be derived below. We start with

examining three cases separately and characterize equilibrium investment strategies.

i) When the initial capacity for any �rm, say �rm i, is low enough, that isKi0+Ii0 ≤ qcid satis�ed,

the investment will bene�t the initial node as well as up and intermediate states in the second

period. That is, initial investment will bene�t all demand states and the production constraints will

be binding.

The objective function to be maximized for �rm i in the initial period will be,

vi0 = qi0(p̄− qi0 − qj0 − c)− fIi0 + θviu(Ii0, Ij0) + (1− θ)vid(Ii0, Ij0) + λi0(Ki0 + Ii0 − qi0).

where i 6= j and viu(Ii0, Ij0) = [(Ki0 + Ii0)(p̄− (Ki0 + Ii0 +Kj0 + Ij0)/(1 + g)− c)], and

vid(Ii0, Ij0) = [(Ki0 + Ii0)(p̄−Ki0 − Ii0 −Kj0 − Ij0 − c)].

The optimality condition for investment choice is dvi0/dIi0 = 0 which yields

(3a) −f+λi0+θ(p̄−(2(Ki0+Ii0)+Kj0+Ij0)/(1+g)−c)+(1−θ)(p̄−2(Ki0+Ii0)−Kj0−Ij0−c) = 0.

When the constraint at the initial stage binds, (Ki0 + Ii0− qi0) = 0, we will have λi0 ≥ 0, which

can be obtained by solving,

dvi0/dqi0 = 0: p̄− c− 2(Ki0 + Ii0)−Kj0 − Ij0 − λi0 = 0.

Inserting this into (3a) and solving the same problem for player j, we obtain

−f + (p̄− c− 3(Ki0 + Ii0)) + θ(p̄− c− 3(Ki0 + Ii0)/(1 + g)) + (1− θ)(p̄− c− 3(Ki0 + Ii0)) = 0.

This yields the optimal investment function for �rm k = i, j, i 6= j

Ik0 =
(1 + g)(2(p̄− c)− f)

6(1 + g)− 3θg
−Kk0.

This is the investment strategy when the production constraints bind in all demand states. To

have this investment scenario hold, Ki0 + Ii0 ≤ qci0 must be satis�ed.

ii) Since the highest demand level is reached in the second period upstate, one should consider

whether it is optimum to invest in the initial period and have the capacity fully utilized in the

upstate. This case occurs when the condition qckd ≤ Kk0 < qcku holds, that is when the initial

capacity is high enough so that it does not bene�t the intermediate or initial state but low enough

so that initial investment provides bene�t in the upstate only.
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For �rm i the value function to be maximized in the initial period will be

vi0 = qi0(p̄− qi0 − qj0 − c)− fIi0 + θviu(Ii0, Ij0) + (1− θ)vid(Ii0, Ij0) + λi0(Ki0 + Ii0 − qi0),

where viu(Ii0, Ij0) = (Ki0 + Ii0)(p̄ − (Ki0 + Ii0 + Kj0 + Ij0)/(1 + g) − c), and vid(Ii0, Ij0) =

qid(p̄− qid − qjd − c).

The necessary condition dvi0/dIi0 = 0 yields,

(3b) −f + λi0 + δθ(p̄− (2(Ki0 + Ii0) +K + Ij0)/(1 + g)− c) = 0, where λi0 = 0 holds. Then

the solution for both �rms are,

IMP
k0 =

(1 + g)(p̄− c− f/θ)
3

−Kk0, k = i, j, i 6= j.

This is the investment quantity when the production constraint binds only in the upstate.

In the �nal case iii), the investment quantity is zero in equilibrium because production constraints

never bind. This is due to high initial capacities. �

Proof of Proposition 4:

If �rm j's production capacity is high so that Kj0 ≥ ((p̄− c)(1 + g)− γ)/2 is satis�ed then �rm i's

investment will hold either a) or b) below.

a) Firm i's production constraint binds upstate only.

The value function to be maximized in the initial period will be

vi0 = qi0(p̄− qi0 − qj0 − c)− fIi0 + θviu(Ii0, Ij0) + (1− θ)vid(Ii0, Ij0) + λi0(Ki0 + Ii0 − qi0),

where viu(Ii0, Ij0) = (Ki0+Ii0)(p̄−(Ki0+Ii0+qju)/(1+g)−c), and qju = ((p̄−c)(1+g)−qiu)/2,

and qiu = Ki0 + Ii0. Also

vid(Ii0, Ij0) = qid(p̄− qid − qjd − c), where qid < Ki0 + Ii0, and qjd < Kj0.

The FOC dvi0/dIi0 = 0 yields,

−f + λi0 + θ[(p̄− c)(1 + g)− 2(Ki0 + Ii0)]/2(1 + g) = 0, where λi0 = 0.

The solution will be

(4a) Ii0 =
(1 + g)(p̄− c)− 2f(1 + g)/θ

2
−Ki0.

b) Capacity constraints bind in all states.

The value function to be maximized in the initial period will be

vi0 = qi0(p̄− qi0 − qj0 − c)− fIi0 + θviu(Ii0, Ij0) + (1− θ)vid(Ii0, Ij0) + λi0(Ki0 + Ii0 − qi0),

where viu(Ii0, Ij0) = (Ki0+Ii0)(p̄−(Ki0+Ii0+qju)/(1+g)−c), and qju = ((p̄−c)(1+g)−qiu)/2,

and qiu = Ki0 + Ii0. Then, viu(Ii0, Ij0) = (Ki0 + Ii0)((p̄− c)(1 + g)− (Ki0 + Ii0))/2(1 + g),Also

vid(Ii0, Ij0) = qid(p̄− qid − qjd − c) = (Ki0 + Ii0)(p̄− c−Ki0 − Ii0 − (p̄− c−Ki0 − Ii0)/2), and

The optimization dvi0/dIi0 = 0 yields,
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The maximization of the objective function for �rm i yields
∂πi
∂Ii0

= (p̄− c− 2qi0 − qj0)∂qi0/∂Ii0 − f + θ[(p̄− c)(1 + g)− 2(Ki0 + Ii0)]/2(1 + g) + (1− θ)[(p̄−

c)− 2(Ki0 + Ii0)]/2 = 0. Also,

qiu = Ki0 + Ii0 = qid, and qju = ((p̄ − c)(1 + g) − qiu)/2, and qjd = (p̄ − c − qid)/2, and

qi0 = Ki0 + Ii0, and qj0 = (p̄− c− qi0)/2. Then the MPE investment for �rm i boils down to

(4b) Ii0 =
2(1 + g)(p̄− c− f)

5(1 + g)− 2gθ
−Ki0.

Note that the output of �rm j in the upstate will be qju = ((p̄ − c)(1 + g) − qiu)/2, where

qiu = Ki0 + Ii0. The highest level of output for �rm j in the upstate will be obtained when qiu is

the lowest, which happens when both up and intermediate state constraints for �rm i bind at the

second stage. This corresponds to qiu = 2(1 + g)(p̄− c− f)/5(1 + g)− 2gθ ≡ γ. Then we obtain the

upper bound of �rm j's initial capacity Kj0 ≥ ((p̄− c)(1 + g)− γ)/2 = (3qcju − γ)/2, which ensures

that �rm j's production is interior and never invests. �

Proof of Proposition 5:

If �rms are investing at the second period, then they are facing the high demand market that is

the upstate demand. If both �rms invest then their production constraints will be binding in the

upstate because �rms' investments will be fully utilized and there will be no idle capacity left.

In the case of investment bene�ting the upstate only, the value function to be maximized for

�rm i will be

viu(Ii0, Ij0) = (Ki0 + Ii0)(p̄− c− (Ki0 + Ii0 +Kj0 + Ij0)/(1 + g))− fIiu.

The necessary condition dviu/dIiu = 0 yields,

[p̄− c− (2(Ki0 + Iiu) +Kj0 + Iju)/(1 + g)− f ] = 0.

Then MPE investment solution for both �rms is

Iku =
(1 + g)(p̄− c− f)

3
−Kk0, k = i, j, i 6= j. �

Proof of Proposition 7:

In characterizing the OLNE investments, we will examine the same cases we studied for MPE

characterization.

The pro�t function to be maximized for player i is

πi(.) = (p̄− σ0(qi0 + qj0)− c)qi0 − fIi0 + θ[(p̄− (qiu + qju)/(1 + g)− c)qiu] + (1− θ)[(p̄− (qid +

qjd)− c)qid + Λ, where Λ is a function of the Lagrange multipliers and equals

Λ = λi0(Ki0 − qi0) + λiu(Ki0 + Ii0 − qiu) + λid(Ki0 + Ii0 − qid).
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Case 1 : Upstate constraint is binding for both players.

The �rst order conditions for player i are
∂πi
∂Ii0

= −f + λiu = 0, and
∂πi
∂qiu

= θ[p̄− (2qiu + qju)/(1 + g)− c]− λiu = 0 and qiu = Ki0 + Ii0.

Solving them simultaneously yields

Ii0 = (α− 2Ki0 −Kj0 − Ij0)/2, for i, j = 1, 2, where α = (1 + g)(p̄− c− f/θ)

Solving investment expressions for both players, the equilibrium investment function will be

(7a) Ik0 = α/3−Kk0, k = i, j, i 6= j.

Clearly, when investment is bene�ting the upstate only the investment rules are identical under

both open-loop and Markov perfect information structures.

Case 2 : Both up and intermediate demand states bind for both players.

The maximization of the objective function for �rm i yields
∂πi
∂Ii0

= −f + λiu + λid = 0, and
∂πi
∂qiu

= θ[p̄ − (2qiu + qju)/(1 + g) − c] − λiu = 0 and
∂πi
∂qid

=

(1− θ)[p̄− (2qid + qjd)− c]− λid = 0, and

qiu = Ki0 + Ii0 = qid. The investment expression for �rm i becomes,

Ii0 = −Ki0−
(Kj0 + Ij0)

2
+

(1 + g)(p̄− c− f)
2(1 + g − gθ)

. Similarly we can obtain the investment expression

for �rm j. Solving them simultaneously yields the optimal OLNE investments,

(7b) Ii0 =
(1 + g)(p̄− c− f)

3(1 + g − θg)
−Ki0, and Ij0 =

(1 + g)(p̄− c− f)
3(1 + g − θg)

−Kj0.

Note that investments will be identical for both �rms as long as initial capacities are the same.

Proof of Proposition 8:

Case A: This is the case in which all capacity constraints bind in all periods.

The objective function to be maximized in the initial period is,

vi0 = qi0(p̄− qi0 − qj0 − c)− fIi0 + θviu(.) + (1− θ)vid(.) +
∑
t

λit(Kit + Iit − qit),

where viu(Ii0, Ij0) = [(Ki0 + Ii0)(p̄− c− (Ki0 + Ii0 +Kj0 + Ij0)/(1 + g))], and

vid(Ii0, Ij0) = [(Ki0 + Ii0)(p̄−Ki0 − Ii0 −Kj0 − Ij0 − c)].

The �rst order necessary condition dvi0/dIi0 = 0 yields

−f + λi0 + λiu + λid = 0, i, j = 1, 2, i 6= j, where

λiu = θ(p̄−(2(Ki0+Ii0)+Kj0+Ij0)/(1+g)−c), and λid = (1−θ)(p̄−2(Ki0+Ii0)−Kj0−Ij0−c),

λi0 = (p̄− 2(Ki0 + Ii0)−Kj0 − Ij0 − c).

When the constraints bind, we will have λi0, λiu, λid ≥ 0.

Inserting these into the above �rst order condition and solving the same problem for player j,

we obtain
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IOLk0 =
(1 + g)(2(p̄− c)− f)

6(1 + g)− 3θg
−Kk0, k = i, j.

Observe that the open-loop investment strategy is exactly same as the Markov perfect investment

strategy characterized earlier. This investment will hold for the same parameter region as de�ned

for the Markov perfect investment.

Case B : Since the highest demand level is reached in the second period upstate, one should

consider whether it is optimal to invest in the initial period and have the capacity constraint binding

in the upstate demand alone, given that �rms employ open-loop investment strategies.

The �rst order necessary condition dvi0/dIi0 = 0 yields

(B.2) − f + λi0 + λiu + λid = 0, i, j = 1, 2, i 6= j.

λiu = θ(p̄− (2(Ki0 + Ii0) +K + Ij0)/(1 + g)− c) ≥ 0, and λid = 0, λi0 = 0.

Inserting them into (B.2) and solving the same problem for player j, we obtain

IOLi0 =
(1 + g)(p̄− c− f/θ)

3
−Ki0, i, j = 1, 2, i 6= j.

Clearly this investment expression is identical to the MPE investments.�

Proof of Proposition 9:

Open-loop Solution

All capacity constraints bind in the second period upstate

The objective function to be maximized in the initial period will be,

vi0 = qi0(p̄− qi0 − qj0 − c) + θviu(.) + (1− θ)vid(.) +
∑
t

λit(Kit − qit).

where viu(Ii0, Ij0) = [qiu(p̄− c− (qiu + qju)/(1 + g))− fIiu], and

vid(Ii0, Ij0) = [qid(p̄− qi0 − qj0 − c)].

The �rst order necessary condition dvi0/dIiu = 0 yields λiu − θf = 0, i, j = 1, 2, i 6= j, where

λiu = θ(p̄− (2(Ki0 + Ii0) +Ki0 + Ij0)/(1 + g)− c).

Solving for the optimal investment leads to

IOLiu =
(1 + g)(p̄− c− f)

3
− Ki0, i, j = 1, 2, i 6= j. This result is equivalent to the MPE

solution characterized in Proposition 5. �

Proof of Proposition 10:

We �rst start the equilibrium investment analysis with time-to-build. We will prove this when only

upstate production constraint binds for �rm i. The proof when they bind in other states is similar
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(see the proofs of Propositions 2 and 4) and hence it is omitted.

With time-to-build investment

Under Markov perfect equilibrium, the investment decisions are made as follows. The objective

function to be maximized in the initial period will be a function of state variables,

πi(.) = (p̄− σ0(qi0 + qj0)− c)qi0 − fIi0 + θ[(p̄− c− (Ki0 + Ii0 + qju)/(1 + g))(Ki0 + Ii0)] + (1−

θ)[(p̄ − (qid + qjd) − c)qid + λi0(Ki0 − qi0), where qju = ((p̄ − c)(1 + g) −Ki0 − Ii0)/2 which is the

best response function of �rm j at the upstate.

The derivative with respect to the investment is
∂πi
∂Ii0

= −f + θ[p̄− c− (Ki0 + Ii0 + (p̄− c)(1 + g))/2(1 + g)− (Ki0 + Ii0)/2(1 + g)] = 0. Solving

for investment quantity leads to

IMi0 =
(α− f(1 + g)/θ)

2
−Ki0.

Next we analyze open-loop equilibrium investment strategy. The �rst order conditions for player

i are
∂πi
∂Ii0

= −f + λiu = 0, and
∂πi
∂qiu

= θ[p̄− (2qiu + qju)/(1 + g)− c]− λiu = 0 where qiu = Ki0 + Ii0,

and qju = ((p̄− c)(1 + g)−Ki0 − Ii0)/2. The equilibrium investment will be

IOi0 =
(α− f(1 + g)/θ)

3
−Ki0, where α = (1 + g)(p̄− c− f/θ).

Clearly IMi0 > IOi0. That is, MPE investment exceeds OLNE one.

Note that we have already analyzed the case in which both constraints bind and one of the �rms

invests in the earlier section.

With instantaneous investment

The corresponding scenario in the instantaneous investment would be the case in which �rm i

invests at t = 1 high demand state only and its capacity constraint binds in that state.

Under Markov perfect equilibrium, the investment strategy is obtained as follows. The value

function to be maximized in the initial period is

vi0 = qi0(p̄− qi0 − qj0 − c) + θviu(.) + (1− θ)vid(.) + λi0(Ki0 + Ii0 − qi0),

where viu(Ii0) = (Ki0 + Iiu)(p̄− c− (Ki0 + Iiu + qju)/(1 + g))− fIiu, and qju = ((p̄− c)(1 + g)−

Ki0 − Iiu)/2, also vid(.) = qid(p̄− qid − qjd − c).

The FOC dvi0/dIiu = 0 yields,

θ[p̄− c− (Ki0 + Iiu + (p̄− c)(1 + g))/2(1 + g)− (Ki0 + Iiu)/2(1 + g)− f ] = 0.

The solution is

IMiu =
(1 + g)(p̄− c− 2f)

2
−Ki0.
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Under open-loop equilibrium, the investment pro�le is characterized as follows. Note that all

capacity constraints bind in the second period upstate.

The objective function to be maximized in the initial period will be,

vi0 = qi0(p̄− qi0 − qj0 − c) + θviu(.) + (1− θ)vid(.) +
∑
t

λit(Kit − qit).

where viu(Ii0, Ij0) = [qiu(p̄−c−(qiu+qju)/(1+g))−fIiu], and vid(Ii0, Ij0) = [qid(p̄−qi0−qj0−c)].

The �rst order necessary conditions dvi0/dIiu = 0 yield

λiu − θf = 0,

and λiu = θ(p̄− (2qiu + qju)/(1 + g)− c), qiu = Ki0 + Iiu, and qju = ((p̄− c)(1 + g)− qiu)/2

Solving for the equilibrium investment results in

IOiu =
(1 + g)(p̄− c− 2f)

3
−Ki0.

An alternative scenario can also emerge. In the instantaneous investment case it is likely that

a �rm invests at t = 0 and its capacity constraint binds in the upstate demand alone, because the

highest demand level is reached in the second period upstate.

The corresponding Markov perfect equilibrium investment strategy has the following property.

The value function to be maximized in the initial period will be

vi0 = qi0(p̄− qi0 − qj0 − c)− fIi0 + θviu(.) + (1− θ)vid(.) + λi0(Ki0 + Ii0 − qi0),

where viu(Ii0, Ij0) = (Ki0 +Ii0)(p̄−c−(Ki0 +Ii0 +qju)/(1+g)), and vid(.) = qid(p̄−qid−qjd−c).

The FOC dvi0/dIi0 = 0 yields,

−f + λi0 + θ[p̄ − c − (Ki0 + Ii0 + (p̄ − c)(1 + g))/2(1 + g) − (Ki0 + Ii0)/2(1 + g)] = 0, where

assume interior initial output without loss of generality and hence λi0 = 0.

The equilibrium is

IMi0 =
(1 + g)(p̄− c− 2f/θ)

2
−Ki0.

Also, the corresponding open-loop equilibrium investment strategy is obtained as follows.

The �rst order necessary condition dvi0/dIi0 = 0 yields

−f + λi0 + λiu = 0, where

λiu = θ(p̄− c− (2(Ki0 + Ii0) + ((p̄− c)(1 + g)− (Ki0 + Ii0))/2)/(1 + g)) = 0, and λi0 = 0.

The equilibrium investment will be

IOi0 =
(1 + g)(p̄− c− 2f/θ)

3
−Ki0.

Clearly, for all cases examined the MPE investments are higher than the OLNE investments. �
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Proof of Proposition 11:

Markov Perfect Equilibrium (MPE) Solution

Since the production constraints at the up-up (at time 2) and up (at time 1) states will be binding

for both players, the pro�t expression in the �nal period up-up state is πiuu = (Ki0 + Ii0 + Iiu)(p̄−

(Ki0 + Ii0 + Iiu +Kj0 + Ij0 + Iju)/(1 + g)2 − c) and the expected pro�t at the �rst period up-state

is πiu = (Ki0 + Ii0)(p̄ − (Ki0 + Ii0 + Kj0 + Ij0)/(1 + g) − c) − fIiu + θπiuu + (1 − θ)πiud, where

πiud is the pro�t in the up-intermediate state that does not include any investment term in it as the

constraints do not bind in this state. The pro�t function to be maximized at the initial period is,

πi0(.) = qi0(p̄− (qi0 + qj0)− c)− fIi0 + θπiu(.) + (1− θ)πid(.) + λi0(Ki0− qi0), where the expression

πid is the pro�t function at the intermediate state which is independent of the investment terms as

the constraints in the intermediate state do not bind.

The optimality condition for the upstate investment is,
∂πiu
∂Iiu

= −f + θ[(p̄ − (2Ki1 + 2Iiu + Kj1 + Iju)/(1 + g)2 − c)] = 0, where Ki1 = Ki0 + Ii0. This

results in

Iiu =
(m− f/θ)(1 + g)2

2
− (2Ki1 +Kj1 + Iju)

2
. For �rm j Iju =

(m− f/θ)(1 + g)2

2
−

(2Kj1 +Ki1 + Iiu)
2

. Solving them together leads to Iiu(Ii0) = (m − f/θ)(1 + g)2/3 − Ki1(Ii0)

for i, j = 1, 2, i 6= j.

Then
∂Iiu
∂Ii0

= −1, and
∂Iju
∂Ii0

= 0.

The optimality condition for the initial period investment is,
dπi0
dIi0

=
∂πi0
∂Ii0

+ θ
∂πiu
∂Ii0

= 0, as the production constraints bind only in the up (u) and up-up (uu)

states.
∂πiu
∂Ii0

= −f ∂Iiu
∂Ii0

+ (m− (2(Ki0 + Ii0) +Kj0 + Ij0)/(1 + g) + θ
∂πiuu
∂Ii0

Given Ij0 we optimize with respect to Ii0:
∂πiuu
∂Ii0

= (1 +
∂Iiu
∂Ii0

)(m− (Ki0 + Ii0 + Iiu +Kj0 + Ij0 +

Iju)/(1 + g)2) + (Ki0 + Ii0 + Iiu)(0− (1 +
∂Iiu
∂Ii0

)/(1 + g)2) = 0 due to
∂Iiu
∂Ii0

= −1.

Then
dπi0
dIi0

= −f + θ[(m− (2(Ki0 + Ii0) +Kj0 + Ij0)/(1 + g) + f ] + θ2[0] = 0. Inserting Iiu(Ii0),

and solving for Ii0 results in the MPE initial investment,

Ii0 =
(1 + g)

3θ
(θ(m+ f)− f)−Ki0 = α/3−Ki0 + f(1 + g)/3. The investment in the upstate will

be

Iiu =
(m− f/θ)(1 + g)2

3
− (1 + g)

3θ
(θ(m+ f)− f) = [g(α− f)− f ]/3.
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Open-loop Equilibrium Solution

The pro�t expressions are similar to the ones in the MPE analysis. The di�erence is the solution

procedure. MPE uses backward solution, whereas OLNE uses forward solution where decisions are

made at the outset.

The pro�t function at the period one upstate is,

viu = (p̄− (qiu + qju)/(1 + g)− c)qiu− fIiu + θ[(p̄− (qiuu + qjuu)/(1 + g)2− c)qiuu + (1− θ)viud(.)

subject to

qiu 6 Kiu, and qiuu < Kiu + Iiu, and qiud 6 Kiu + Iiu.

In this pro�t function, the term viud(.)is the pro�t at the state up-intermediate (ud) and it is

not a function of investment level as the production constraint is interior.

The pro�t function at the period one intermediate state is,

vid = (p̄− (qid + qjd)− c)qid − fIid + θ[(p̄− (qidu + qjdu)/(1 + g)− c)qidu + (1− θ)vidd(.)

subject to

qid 6 Kid, and qidu < Kid + Iid, and qidu 6 Kid + Iid,

where vidd(.) is the pro�t at the intermediate-intermediate state.

The pro�t function to be maximized at the outset of the game is,

πi0(.) = (p̄− (qi0 + qj0)− c)qi0 − fIi0 + θviu(.) + (1− θ)vid(.) + λi0(Ki0 − qi0).

The �rst order pro�t maximizing conditions for �rm i, with the binding up and up-up states,

will be
∂πi0
∂Ii0

= −f + λiuu + λiu = 0, and
∂πi0
∂qiu

= θ[p̄ − (2qiu + qju)/(1 + g) − c] − λiu = 0 and

∂πi0
∂qiuu

= θ2[p̄− (2qid + qjd)/(1 + g)2 − c]− λiuu = 0, and

∂πi0
∂Iiu

= −θf + λiuu = 0, where the λ terms are the multipliers of the production constraints at

the corresponding states. Also

qiu = Ki0 + Ii0 = qid, and qiuu = Ki0 + Ii0 + Iiu = qiud.

The solution is

Ii0 = (mθ − f + fθ)(1 + g)/3θ −Ki0 = α/3 −Ki0 + f(1 + g)/3, where α = (1 + g)(m − f/θ),

where m = p̄− c and

Iiu = [g(α− f)− f ]/3. The investment in the upstate is independent of the initial capacity.�

Proof of Proposition 12:

In the three period planning the optimality conditions are,
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q0 = p̄−c for the initial output, −f+λu+λuu = 0 for the initial investment, and θ(p̄−c−qu/(1+

g)) = λu and θ
2(p̄− c− quu/(1 + g)2) = λuu for the upstate and the up-upstate outputs, resp. Also,

the optimality condition for the upstate investment satis�es −θf + λuu = 0. When the production

constraints is binding in the upstate and up-upstate, the optimal investments will be I0 = (1+g)(p̄−

c)−f(1−θ)(1+g)/θ−K0 at the initial period and Iu = (1+g)2(p̄−c−f/θ)−(1+g)(p̄−c−f(1−θ)/θ).

Hence, the total capacity at the �nal period will be K0 + I0 + Iu = (1 + g)2(p̄− c− f/θ). Note that

second period investment is independent of the initial capacity, and the total capacity at the �nal

period is also irrelevant of the initial capacity.�
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