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Abstract This paper studies market outcome equivalence of two dynamic
production-capital investment games under uncertainty. One is played under
complete information, while the other, feedback (FB) game, is played under
incomplete information about the opponents’ costs and market demand. The
FB game structure may be observed in some newly initiated industries, in which
a homogeneous good is exchanged via an auction mechanism. In that case, the
FB game setting may predict the complete information equilibrium market
outcomes.
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1 Introduction

This paper outlines a two-period dynamic game. The objective is to study an
industry structure in which economic agents (players or firms) noncooperatively
find an optimal way to produce a homogeneous good and make capacity invest-
ments in production under uncertainty and incomplete information. Specifically
we consider that demand for a product is uncertain and that the exact functional
form of demand may not be known to the players (or players have no perfect
foresight of it). Moreover each player only knows his own production capacity
levels, and production and investment costs of several technologies, but not the
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rivals’ information. In this setting we address the question of how equilibrium
outcomes might be formed in the market. Suppose that an auctioneer procures
the homogeneous good that is produced by firms. We assume multiple inter-
actions between players and the auctioneer before optimal (production and
capital investment) decisions are made. During each communication players
simultaneously reveal their willingness to produce quantities to the auctioneer
who then determines the price at the level of total quantity supplied. Firms
solve their ‘sub-problems’ to determine their quantities and ultimately a set of
‘artificial equilibrium’ outcomes is obtained in each communication period. We
call this setting a finitely repeated feedback (FB) game and explain the details
of this game in the following section.

The rules and equilibrium concept of the FB game are different than the
ones in the literature. For instance the structure of the FB game may recall
‘communication equilibria’ and/or ‘rational learning equilibria’, in which play-
ers learn how to play Nash equilibrium with or without complete information in
finitely and infinitely repeated games. Forges (1986) proposed extensive form
correlated equilibrium and communication equilibrium games in which players
were allowed to observe private signals and to transmit inputs at every stage (of
the event tree) to a correlation device. He showed that payoffs associated with
these equilibrium concepts are equivalent to those of Nash equilibrium. In these
equilibrium concepts, players communicate with each other during preplay or
intraplay stages. Mertens et al. (1994) surveys the literature regarding how play-
ers learn to play Nash equilibrium in repeated games. Kalai and Lehrer (1993)
study an infinitely repeated game with discounting in which players are subjec-
tively rational: if a player’s belief about a rival’s strategies is compatible then,
by means of Bayesian updating, players’ strategies will converge to the Nash
equilibrium outcome in the long run. Kalai and Lehrer criticize other models
(by Selten 1991; Milgrom and Roberts 1991; Fudenberg and Levine 1993) since
these models restrict the behavior of players to be myopic and bounded.

This paper also has equilibrium computational aspects. We show that FB
game equilibrium outcomes converge to dynamic Cournot–Nash (CN) equilib-
rium outcomes under demand uncertainty. This correspondence may also be
considered as computing CN outcomes algorithmically in a different space such
that both spaces have different information structures and rules.

Finding and/or computing Nash equilibria has been studied since 1950s for
both normal and extensive form games. Von Stengel (2002) surveys the expo-
sition of linear methods used to find equilibrium for two-person games. For
a survey of nonlinear methods for computing Nash equilibria for more than
two player noncooperative games see McKelvey and McLennan (1996). The
algorithms designed for solving Nash equilibrium outcomes mostly deal with
small-scale optimization problems in game-theoretical settings. For example,
Uryasev and Rubinstein (1994) consider a special class of numerical algorithms,
the so-called relaxation algorithm, to compute Nash equilibrium points in non-
cooperative games. Belenkii et al. (1974), Basar (1987), and Li and Basar (1987)
studied relaxation algorithms for deterministic games, where fixed-point theo-
rems are used to check equilibrium convergence conditions. Basar (1987) and
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Li and Basar (1987) proved convergence for a two-player static game via a con-
traction-mapping theorem. For linear-quadratic settings, it may be relatively
easy to check the convergence conditions. However, for other nonlinear pay-
off functions with coupled constraints, it may be intractable to check these
conditions. Uryasev and Rubinstein proposed a different approach to tackle
the problem for nonlinear functions. They utilize “the residual terms” of the
Nikaido-Isoda Hukuhane and Kazuo (1955) function. They show convergence
of the algorithm via non-smooth weakly convex/concave Nikaido-Isoda func-
tions. The usefulness of their methodology was discussed only for static games
without constraints. Krawczyk and Uryasev (2000) study another algorithm to
solve a multi-player, non-zero-sum dynamic game with coupled constraints.
Krawczyk and Uryasev introduce an improvement to the relaxation algorithm
by implementing the steepest-descent step-size control technique. They prove
the convergence of their algorithm and test it on a several problems. They
specifically apply their procedure to a river basin pollution problem with cou-
pled environmental constraints and show that the algorithm demonstrates fast
convergence for a wide range of parameters. Their algorithm minimizes a mul-
tivariate Nikaido-Isoda function by using a standard nonlinear programming
routine at each level of iteration.

In this paper the FB game has two main features. First, from the computa-
tional point of view, it may be considered as an algorithm (game) to compute
CN equilibrium outcomes. As an algorithm, but not from the point of view of
the informational structure and rules, it resembles the work of Krawczyk and
Uryasev (2000), although we use a much simpler algorithm. Second, it shows
how a communication scheme under incomplete information leads to an equilib-
rium whose outcomes may be obtained via a dynamic game structure in which
there is no communication and/or learning but players have full knowledge
about rivals’ strategies and full information about all parameters of the game.

The structure of the paper is as follows. In Sect. 2 we present the correspon-
dence between one period FB and CN production games with symmetric and
asymmetric players that have coupled constraints. Section 3 extends the pro-
cedure to two periods and considers capacity investment in production under
demand uncertainty and presents an illustrative example. Section 4 concludes.

2 Model

In Sect. 2.1 we show how our approach is implemented for one-period pro-
duction oligopoly (FB and CN) games. In Sect. 2.2 we study these games with
capacity constraints.

2.1 One-period oligopoly games

2.1.1 Finitely repeated feedback game

Timing Let tc denote a communication period. Let τ denote a production
period.
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Communication period: tc < τ .
Production period: τ = 0.

The communication period precedes the production period and is repre-
sented, without loss of generality, by integers. To not deal with negative numbers
let t = | tc | such that t = 1, 2, . . . , T , where T < ∞. Here t denotes iteration
period.

Description of the FB game Consider an oligopoly with n ≥ 2 profit-maxi-
mizing-firms who produce a homogeneous product so that each player faces the
same price in the market. Each player has a differentiable cost function. In a
given period of time each player is not sure how much to produce since market
price and demand are both unknown. Each one starts with a quantity that he
may be willing to produce. These quantities are submitted to the auctioneer,
who procures the good and knows the market demand (or has a perfect forecast
for the demand). We assume that communication between the auctioneer and
firms is costless. Given these submitted quantities, the auctioneer calculates the
price (that buyers are willing to pay for the total quantity supplied) and delivers
it to the players. Then each player solves his own sub-problem that maximizes
his ‘regularized’ payoff function for the quantities he wants to produce at this
price level. After that, each player truthfully submits a quantity which is a con-
vex combination of the previous and current quantities. The auctioneer uses
these new quantities to calculate a new candidate market price. It is called a
candidate price since the players may not agree to produce at that price. Again
each firm gets this new price and solves his optimization problem. This process
continues until the candidate market price and/or proposed quantities at itera-
tion t is approximately equal to the price and the quantities at iteration t−1. We
note that during this finitely repeated interaction between the players and the
auctioneer, players do not observe the rivals’ submitted quantity levels directly,
nor does the candidate market price reflect the opponents’ outputs directly
since the exact functional form of the demand is unknown to the players. It is
clear that iteration t output levels are a function of the past candidate market
prices.

We call the above process the finitely repeated feedback (FB) game because
prior to the actual production at a given period players interact finitely many
times with the auctioneer and exchange information about the candidate mar-
ket outcomes before they decide how much to actually produce.

Algorithmically the FB game is defined as follows.

Step 0. (Initialization) Each firm i (i = 1, 2, . . . , n, where n < N) selects q̄i,0 ≥
0 arbitrarily at the beginning and the auctioneer calculates a candidate
market price P̄0 and submits this to the firms.

Step 1. (Solving sub-problems) Each firm solves the following sub-problem in
every iteration:

max
qi,t≥0

P̄t−1qi,t − c(qi,t) − f (qi,t) (1)

Let the solution sequence be (q∗
i,t)i at iteration t. Note that here P̄t−1

is a fixed number, not a function of quantities.



A dynamic Cournot–Nash game 145

Step 2. (Communication and keeping track of short-term memories) Each
player computes the following: q̄i,t = (1−α)q̄i,t−1+αq∗

i,t, where t repre-
sents iteration, (t = 1, 2, . . . , T, where T < ∞ ), and α ∈ (0, 2/(n + 1)).
The auctioneer calculates the new price, P̄t by using

(
q̄i,t

)
i.

Step 3. (Stopping criteria) Let ξ1, ξ2 be sufficiently small positive real num-

bers. If
∣∣∣q∗

i,t − q∗
i,t−1

∣∣∣ < ξ1 and/or
∣∣P̄t − P̄t−1

∣∣ < ξ2 hold, then stop,

otherwise repeat Step 1 and Step 2. �
Definition 1 The set of exchanged candidate prices and quantities (P̄t, q̄i,t)i,t de-
fined above is called artificial equilibria of the sub-problems defined in the expres-
sion (1).

It is observed that, by mathematical induction, the formulation in Step 2 at
iteration T becomes,

q̄i,T = (1 − α)Tq̄i,0 + α

T−1∑

t=0

(1 − α)tq∗
i,T−t (2)

We call the payoff function in (1) the ‘regularized’ profit function, since the
price is constant and it has an additional term — the ‘regularization’ function
f (·), which may be any polynomial function. (We note that the function f (·)
is chosen to allow any differentiable cost functions including affine cost func-
tions. If the cost function is affine, then the function f (·) entails the first order
condition of (1) to be a function of q. Alternatively, if we exclude affine cost
functions then we may discard the function f (·) in (1). However, for the sake of
computational simplicity the function f (·) is chosen to be of the smallest order,
(o(f

′
(·)) = 1) so that even if the cost function is linear, the first order condition

for (1) will be a function of q. Hence, without loss of generality let f (·) = 1
γ

q2
i ,

where γ = 2 . Taking a convex combination of the quantities in Step 2 may be
referred to as keeping track of short-term memories. Thus, each player uses all
the information that he collects to reach optimal final decisions. We assume that
each player uses the same weighting scheme (α), and it is constant. If n is large
then each player puts little weight on the quantity q∗

i . In (1) it is not required to
optimize and update α for each iteration, as opposed to the ‘steepest-descent-
method’ (see Bertsekas 1999). With regard to the economic importance of α , if
the number of players is large then players put more weights on their previously
proposed quantities. This has two advantages. First, it is possible that the other
players have started with some initial quantities that are far away from the
optimal ones. Then, the price obtained from the auctioneer will reflect this fact
and hence for a player the possible production quantity with this given price
will be off. If the number of players is large, then that α choice will alleviate
the initialization problem. Second, when the number of players is large they
may need to collect more information (through price) about rivals’ strategies
before they choose their optimal actions. Hence they cautiously put little weight
on their current plans. As they get more information, the weights of very past
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actions do gradually decrease. However, if the number of players gets small
then the interval of α enlarges, and hence players can put more value on their
current strategies.

2.1.2 A Cournot–Nash (CN) game

Timing Before production takes place each firm has complete information
about market demand and rivals’ costs. Since this is a one-shot game no capital
investment is considered.
Production period: τ = 0.

Description of the CN game Consider an oligopoly market with n ≥ 2 firms
such that each firm’s cost function is convex and differentiable, and firms face
a linear demand. Let P(Q) be the inverse demand function which determines
the price of output as a function of total production; this is a strictly decreas-
ing function of the total quantity of production in the market. Specifically, let
P(Q) = D − Q be the inverse demand with a constant D > 0. Each player
produces the same quality of the good and has no capacity constraint. Later we
will consider capacity constraints. Assume that firms compete a la Cournot and
know their rivals’ costs. Under these assumptions, when each player maximizes
his profit function, Cournot–Nash equilibrium outcomes will prevail in the mar-
ket since the Cournot–Nash equilibrium already presupposes that firms have an
accurate knowledge about the opponents’ cost functions. Formally, each player
i solves the following maximization problem.

max
qi

P(Q)qi − c(qi)

s.t.
∑

i

qi = Q, P + Q = D, qi > 0

The first order necessary condition for player i yields qi = P − c
′
i for an

interior solution.
A symmetric CN equilibrium with identical cost firms implies D − (n + 1)q −

c
′
(q) = 0 . Denote the quantity that solves this equality as qc.
The following proposition relates the outcomes of FB and CN games given

the information structures of the games as defined above.

Proposition 1 For n ≥ 2 player symmetric oligopoly, the equilibrium market
outcomes of the finitely repeated feedback (FB) game converge to the equilibrium
market outcomes of the CN game.

Proof We want to show that q̄i,T → qc
i for some T < ∞. Since we assume that

players are symmetric we will drop the subscript i hereafter. Let q̄0 = ε + qc,
where ε is a real number, then P̄0 = D − n(qc + ε). Also let, without loss of
generality, γ = 2 in (1). Solution of the expression (1) at the first iteration yields
q∗

1 = P̄0 − c
′
(q∗

1). Then a player obtains, q̄1 = (1 − α)q̄0 + αq∗
1 = α(D − (n +

1)qc − c
′
(qc)) + ε(1 − (n + 1)α) + qc − αa1 = ε(1 − (n + 1)α) + qc − αa1, where
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a1 =
∣
∣∣c

′
(qc) − c

′
(q∗

1)

∣
∣∣. The first equality comes from Step 2, the second equality is

because of the appropriate substitutions, and the final equality is due to D−(n+
1)qc −c

′
(qc) = 0. The new price at the first iteration becomes P̄1 = D−nq̄1. Let

z = (n+1)α, then the above equation can be rewritten as q̄1 = (1−z)ε+qc−αa1.

Let at =
∣
∣∣c

′
(qc) − c

′
(q∗

t )

∣
∣∣, t = 1, . . . , T. Similarly, by following this process for the

second iteration we obtain q̄2 = (1−α)q̄1+αq∗
2 = ε(1−z)2+qc−αa1(1−z)−αa2.

Assume that q̄T−1 = (1 − z)T−1ε + qc − α
∑T−1

t=1 at(1 − z)T−t−1 , then we need
to show that q̄T = (1 − z)Tε + qc − α

∑T
t=1 at(1 − z)T−t . At the iteration T,

q̄T = (1 − α)q̄T−1 + αq∗
T holds, where q∗

T = P̄T−1 − c
′
(q∗

T), P̄T−1 = D − nq̄T−1.
Then, q̄T = (1 − α)q̄T−1 + αq∗

T = α(D − (n + 1)q̄T−1 − c
′
) + q̄T−1 = ε(1 −

z)T−1[1−α(n+1)]+qc+αz
∑T−1

t=1 at(1−z)T−1−t−αaT−α
∑T−1

t=1 at(1−z)T−1−t =
(1 − z)Tε + qc − α

∑T
t=1 at(1 − z)T−t.

Let a = min(at)t, then q̄T ≤ (1−z)Tε+qc −αa
∑T

t=1(1−z)T−t = qc +ε
′
((1−

z)T − 1) + ε(1 − z)T , where ε
′ = a/(n + 1).

Choose ξ = ε
′
((1 − z)T − 1) + ε(1 − z)T , which is a small number. Hence for

some iteration T < ∞, and with the tolerance level ξ , q̄T → qc. 	

In the above proof as it can be seen, q̄T is a separable function of

∣∣∣c
′
(qc)−

c
′
(q∗

T)

∣∣∣, and since convergence of c
′
(q∗

T) to c
′
(qc) is shown here, in the following

proofs we will shortly write D − (n + 1)q − c
′ = 0.

Next we extend the result of the above proposition to an asymmetric duopoly
in which players have different costs. First we write the following Lemma.

Lemma 1 Let Am and Bm be two series with an index m ∈ N. Suppose that
Am + Bm → 0. If Am − Bm → 0 then Am → 0 and Bm → 0 .

Proof A straightforward proof for this lemma is as follows. For a given ζ > 0
we want to show that |Am| < ζ . There exist indices N1, N2 ∈ N such that for
m > N1, |Am + Bm| < ζ and for m > N2, |Am − Bm| < ζ . Summation of
−ζ < Am + Bm < ζ and −ζ < Am − Bm < ζ implies |Am| < ζ . Then Bm → 0
holds since Am + Bm → 0. 	

Proposition 2 For asymmetric duopoly, the equilibrium market outcomes of the
finitely repeated feedback (FB) game converge to the equilibrium market out-
comes of the CN game.

Proof Let q̄i,0 = εi +qc
i , for i = 1, 2. Then the initial price is P̄0 = D−qc

1 −qc
2 −

ε1 − ε2. Let γ = 2 in (1). The first iteration solution of (2) yields q∗
i = P̄0 − c

′
i.

Then by suitable substitutions we obtain,

q̄1,1 = (1 − α)q̄1,0 + αq∗
1,1

= α(D − 2qc
1 − qc

2 − c
′
1) + ε1(1 − α) − α(ε1 + ε2) + qc

1

= ε1(1 − α) − α(ε1 + ε2) + qc
1,
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where the first subscript refers to a player, the second subscript refers to itera-
tion and qc

i denotes the CN equilibrium quantity for player i. Similarly the first
iteration quantity for player 2 is,

q̄2,1 = ε2(1 − α) − α(ε1 + ε2) + qc
2.

Given these two quantities the price becomes P̄1 = D − q̄1,1 − q̄2,1. Using a
similar analogy, the second iteration quantities for both players turn out to be
q̄1,2 = qc

1 + ε1(5α2 − 4α + 1) + ε2(4α2 − 2α), q̄2,2 = qc
2 + ε2(5α2 − 4α + 1) +

ε1(4α2 −2α), with the price P̄2 = D− q̄1,2 − q̄2,2. Similarly one can obtain other
iteration results.

Case 1: Assume ε1 = ε2 = ε. Then the proof is the same as the proof of
Proposition 1.

Case 2: Assume ε1 �= ε2. Let ε1 = ε2 + k be for some k ∈ R. Then, q̄1,1 =
qc

1 + ε1(1 − α) − α(ε1 + ε2) = qc
1 + (ε2 + k)(1 − 2α) − αε2 = qc

1 +
(−1)(z − 1)ε2 + kA1, where A1 = 1 − 2α is a residual. For the sec-
ond iteration it is obtained that q̄1,2 = qc

1 + (−1)2(z − 1)2ε2 + kA2,
where A2 = 5α2 − 4α + 1. Similarly, the first iteration for the second
player leads to q̄2,1 = qc

2 + (−1)(z − 1)ε2 + kB1, where B1 = −α,
for the second iteration q̄2,2 = qc

2 + (−1)2(z − 1)2ε2 + kB2, where
B2 = 4α2 − 2α. Observe that A1 + B1 = (−1)(z − 1), A2 + B2 =
(−1)2(z − 1)2, A1 − B1 = (−1)(α − 1), and A2 − B2 = (−1)2(α − 1)2.
By mathemarical induction it is easily shown that at the Tth iter-
ation AT + BT = (−1)T(z − 1)T and AT − BT = (−1)T(α − 1)T .
Now we show that q̄1,T = qc

1 + (−1)T(z − 1)Tε2 + kAT and q̄2,T =
qc

2 + (−1)T(z − 1)Tε2 + kBT . Assume that q̄1,T−1 = qc
1 + (−1)T−1(z −

1)T−1ε2 + kAT−1 and q̄2,T−1 = qc
2 + (−1)T−1(z − 1)T−1ε2 + kBT−1.

Clearly q̄1,T = (1 − α)q̄1,T−1 + αq∗
1,T , where q∗

1,T = P̄T−1 − c
′
1 and

P̄T−1 = D − q̄1,T−1 − q̄2,T−1. Substitution of these terms leads to
q̄1,T = qc

1 + (−1)T(z − 1)Tε2 + kα(AT−1 + BT−1) + kAT−1. Because
of the result of the Lemma 1 and given that ε2 is a constant and
|z − 1| < 1, then for some T, q̄1,T → qc

1. Using similar arguments
as we used before we can also obtain that q̄2,T → qc

2 for the second
player. 	


2.2 One-period oligopoly games with capacity constraints

In what follows we keep the structure of the FB and CN games and add capac-
ity constraints to the production stage. Specifically the optimization problem of
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player i in the CN game will be,

max
qi

P(Q)qi − c(qi)

s.t. qi ≤ Ki,
∑

i

qi = Q, P + Q = D, qi ≥ 0

where Ki is the capacity constraint for player i.
The following proposition shows how the FB game may be used to compute

the equilibrium outcomes in the capacity-constrained CN game.

Proposition 3 For symmetric capacity-constrained oligopolies, the quantities and
prices obtained from the FB game will converge to the equilibrium outcomes of
the CN game.

Proof We will prove this proposition for symmetric duopolies, an extension of
it to many players is similar. The first order necessary condition of the maximi-
zation problem for a player for an interior solution satisfies D−3qc −c

′ −λc = 0
with a complementarity condition (K−qc)λc = 0, where (qc, λc) is the pair of CN
equilibrium quantity and the shadow price of the inequality constraint. Next we
implement the FB game as follows. Let each player initially submit production
quantity q̄0 = ε + qc to the auctioneer who sets the price as P̄0 = D − 2(ε + qc).
Then each player solves (1), say for γ = 2, and the first iteration solution
yields q∗

1 = P̄0 − c
′ −λ∗

1 and λ∗
1(K −q∗

1) = 0. Assume that λ∗
1 = λc +η1 for some

number η1. Then a player computes q̄1 = (1 − α)q̄0 + αq∗
1 = ε(1 − 3α) + qc +

η1(−α), where (λc+η1)(K−q∗
1) = 0 holds. The second iteration of the algorithm

yields q∗
2 = P̄1 − c

′ − λ∗
2, where P̄1 = D − 2q̄1, and λ∗

2 = λc + η2. By suitable
substitutions, q̄2 = (1−α)q̄1+αq∗

2 = ε(1−3α)2+qc+η1(3α2−α)+η2(−α), with
(λc+η2)(K−q∗

2) = 0. By mathematical induction it is shown that at the iteration
T, q̄T = ε(1−z)T +qc −α

∑T
j=1(1−z)T−jηj, where z = 3α, (λc +ηj)(K−q∗

j ) = 0
for all j , and q∗

j is the solution of (1) at iteration j. Next we show that the third
term in q̄T approaches to zero as T increases.

From the complementarity conditions we can solve for ηj for all j …For the
first iteration, 0 = (λc + η1)(K − q∗

1) = (λc + η1)(K − (P̄0 − c
′ − λ∗

1)) = (λc +
η1)(K+2ε+η1−qc) = η1(K+2ε+η1−qc+λc)+2λcε = η1(K−q∗

1+λc)+2λcε ⇒
η1 = −2λcε

K−q∗
1+λc . Note that |η1| ≤ 2 |ε|. By using similar arguments as used above,

for the second iteration we obtain,

|η2| =
∣∣
∣∣
−λc[2ε(1 − 3α) + 2η1(−α)]

K − q∗
1 + λc

∣∣
∣∣ ≤ 2 |ε| (1 − 3α) + 2α |η1| ≤ 2 |ε| (1 − α).

Again by mathematical induction it is easily shown that,
∣∣ηj

∣∣ ≤ 2 |ε| (1−α)j−1,
j = 1, 2, . . . , T.

By triangular inequality,
∣∣∣α

∑T
j=1(1 − z)T−jηj

∣∣∣ ≤ α
∑T

j=1(1 − z)T−j
∣∣ηj

∣∣ ≤
2α |ε| ∑T

j=1(1 − 3α)T−j(1 −α)j−1 ≤ 2α |ε| ∑T
j=1(1 −α)T−1 = 2α |ε| T(1 −α)T−1.
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Here 2α |ε| T(1 − α)T−1 → 0 as T increases, since α < 1 and ε is fixed. Thus,
q̄T = ε(1 − z)T + qc − α

∑T
j=1(1 − z)T−jηj → qc. 	


Next we generalize the above findings to two-period oligopolies that make
investment in production capacity under demand uncertainty.

3 Two-period oligopoly games

3.1 A Cournot–Nash game (CN) under uncertainty

3.1.1 Timing

Capital investments from several technologies are here-and-now decisions made
under demand uncertainty and will be available for use in period 1.
Production and investment period: τ = 0 .
Production period: τ = 1.

3.1.2 Description of the CN game

Consider a class of dynamic oligopolistic games in which players make capital
investment and production decisions under uncertainty about future demand
for a homogeneous product. In this game, we represent the demand uncertainty
by a finite number of scenarios on a tree. Each scenario from root to terminal
node represents a possible realization of a random process. It is assumed that
in the beginning of the game all players share a common characterization of
the random process. Moreover, this is a complete information game such that
each player knows its own possible strategies, production and investment cost
functions, initial capacities, and its rivals’ information. We employ S-adapted
open-loop Nash equilibrium solution paradigm. Every firm is risk neutral and
maximizes its expected payoff. Given the initial capacity levels, in period 0
each firm makes its initial production decisions to maximize current profit, and
chooses its investment in production capacity. These investments will be avail-
able in use for production in period 1. However, demand scenarios for period 1
are stochastic and investment decisions must be made in period 0. After uncer-
tainty is resolved in period 1, players make their production decisions. Any
investment opportunities in period 1 will not be considered since the game ends
at that stage.

Assume that each player accurately predicts the market with the discrete
random walk process illustrated in Fig. 1, where D > 0, δ > 0 and δ is the
random outcome of the uncertainty. Also let the “up-state” probability be U
and the “down-state” probability be 1 − U.

Let Kτ
i = (Kτ

i,1, Kτ
i,2, . . . , Kτ

i,m), where Kτ
i,k, k = 1, 2, . . . , m, denotes the avail-

able capacity at time τ from technology k for firm i. Also let ci(qi) be the total
cost as a function of the vector of outputs for all technologies, and Fi(Ii) be
the total cost of investment for player i, where cost functions are differentiable.
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Fig. 1 Two-period demand
scenarios

P=D-Q

P=D+δ-Q

P=D-δ-Q

τ=0 τ=1

Then a player’s maximization problem becomes,

max 
i(qτ
i,s, Iτ

i , Kτ
i,s)

s.t. qτ
i,s,k − Kτ

i,s,k ≤ 0, τ = 0, 1, ∀i, s, k (3.2)

Qτ
s −

∑

i,k

qτ
i,s,k = 0, τ = 0, 1, ∀i, s, k (3.3)

qτ
i,s,k ≥ 0, Kτ

i,s,k ≥ 0, τ = 0, 1, ∀i, s, k (3.4)

Iτ
i,s,k ≥ 0, τ = 0, ∀i, s, k (3.5)

Iτ
i,k − E(Iτ

i,s,k) = 0, τ = 0, ∀i, s, k (3.6)

Kτ+1
i,s,k − Kτ

i,s,k − Iτ
i,s,k = 0, τ = 0, ∀i, s, k (3.7)

where s ∈ {u, d}, u and d denote for “up-state” and “down-state” scenarios,
respectively. A player’s expected profit function is:


i(·) = P0
∑

k

q0
i,k −

∑

k

ci,k(q0
i,k) −

∑

k

Fi,k(Ii,k)

+ U

[

P1
u

∑

k

q1
i,u,k −

∑

k

ci,k(q1
i,u,k)

]

+ (1 − U)

[

P1
d

∑

k

q1
i,d,k −

∑

k

ci,k(q1
i,d,k)

]

(3.1)

where P0 is the initial price, and P1
u and P1

d are prices in period 1 for the up and
down states, respectively.

The objective function above maximizes the initial period profit plus the ex-
pected profit of the future. Because of (3.3), equilibrium conditions are imposed
for each time period and scenario. The constraint (3.6) enforces the non-antic-
ipativity (non-clairvoyance) condition, which implies that investment decisions
must be implemented before the outcome of the random variable is observed.
In the Eq. (3.6), E refers to “expectation operator”. We note that this game
setting is also studied in Genc et al. (2005).
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3.2 Finitely repeated feedback (FB) game under uncertainty

3.2.1 Timing

Let tc and t
′
c denote communication periods. Let τ denote a production pe-

riod. Again to avoid dealing with negative numbers let t = |tc| such that
t = 1, 2, . . . , T, where T < ∞ , and t denotes iteration period.
Communication period: tc < 0.
Production and investment period: τ = 0.
Communication period: 0 < t

′
c |τ=0 < 1.

Production period: τ = 1.

3.2.2 Description of the FB game under uncertainty

The description of the two-period FB game under demand uncertainty is in
the same vein as the one-period FB game. The only difference is that capital
investment takes place in the initial period. In period 0 each player chooses the
capital investment quantity to meet the next period demand, which is uncertain.
However, this chosen investment quantity is probably sub-optimal. In period 1
uncertainty is resolved and each player chooses production quantities similar
to the process described in period 0, subject to total available capacity which is
the summation of initial capacity plus the investment level chosen in period 0.
Each player solves his sub-problem for each level of investment which results in
artificial equilibrium quantities. To obtain globally optimal production quanti-
ties, each player iterates investment levels until the marginal cost of investment
covers the summation of the shadow prices (opportunity cost) of production
constraints. We assume whichever scenario occurs in period 1, players will stick
to the strategies (production and investment decisions) that they have chosen
in period 0. That is, planning and decisions for the future periods are made
only during the initial period (period 0). That assumption corresponds to the
open-loop Nash equilibrium concept used in the CN game under uncertainty.

To algorithmically solve the two-period CN game under uncertainty, we
revise and add a few steps to the finitely repeated feedback game introduced in
Sect. 2.1. Before period 0 each player follows Step 0 through Step 3 to obtain
the initial-period artificial equilibrium points. They are irrelevant to period 0
investment and period 1 production decisions. At the same time each player
i also chooses an investment level that he considers to make. For that given
level of investment, for each scenario, each player follows procedures similar
to those described in Step 0 through Step 3 to choose the quantities, but in Step
1 he solves

max
qi,t,s

h[P̄t−1,sqi,t,s − c(qi,t,s) − 1
γ

q2
i,t,s]

s.t. 0 ≤ qi,t,s ≤ Ki + Ii,0
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where h = {U, 1−U} denote scenario probabilities. Note that in the one-period
game there is no scenario, hence h = 1.

We add the following step to have stopping criteria for the capital investment
planning/iteration process.

Step 4. (Adding capacity) Iteration of investment levels continues until
Fi.m(Ii,m)−Fi.m′ (Ii,m′ )

Ii,m−Ii,m′ = ∑
s λi,m,s is satisfied, where Ii,m = Ii,m′ + µ, µ

is a small number, m, m′stand for iterations on investment I, and F(·)
denotes the investment cost. The λ represents the shadow price of
the production constraint. Step 4 means that capital investment will
increase incrementally until the cost of doing so does not exceed the
total benefit from the increase in production. We note that with differ-
ent cost and demand structures it is possible to see cycles of excess
demand and excess supply when the firms choose different capacity
levels than they would choose in the equivalent CN game before con-
vergence.

The following proposition shows that under demand uncertainty the CN
game outcomes are algorithmically approximated by the FB game.

Proposition 4 For the two-stage production-investment symmetric oligopolies
under uncertainty, the FB game artificial equilibrium outcomes will converge to
the CN equilibrium outcomes.

Proof This proof is for the case of a duopoly in which each firm has a single
technology. The proof for the case of many players and multiple technologies
is similar. When we form the Lagrange function for the problem described in
the proposition, we will obtain the following first order necessary conditions.

At initial time period D − 3qc − c′ − λc = 0 holds with the complementar-
ity condition (K − qc)λc = 0, where the couple (qc, λc) is the CN equilibrium
quantity and the Lagrange multiplier of the inequality constraint. Hereafter,
implementation of the algorithm is similar to the one in the proof of Proposition
3. At this period, a player chooses a capital investment level I0, and let it be
I0 = σ + Ic, where σ is a real number.

At time 1 for both of the states h[D − 3qc
s − c′] − λc

s = 0 holds with
(K−qc

s)λ
c
s = 0, where s ∈ {u, d}, and a state probability h ∈ {U, 1−U}. A player

selects his production quantities initially as q̄0,u = ε + qc
u and q̄0,d = β + qc

d,
where ε, β ∈ R and q̄0,s ≥ 0. Prices become P̄0,u = D + δ − 2(ε + qc

u) and
P̄0,d = D − δ − 2(β + qc

d). When players solve sub-problems for the sec-
ond step of the algorithm, each one obtains U[P̄0,u − c′

u − q∗
1,u] − λ∗

1,u = 0

and (1 − U)[P̄0,d − c′
d − q∗

1,d] − λ∗
1,d = 0 with λ∗

1,u(K + I0 − q∗
1,u) = 0 and

λ∗
1,d(K + I0 − q∗

1,d) = 0. Let λ∗
1,u = λc

u + η1 and λ∗
1,d = λc

d + ζ1 , where
η1, ζ1 ∈ R such that λ∗

t,s ≥ 0, t = 1, 2, . . . , T. From here the process is
similar to the one used before. From the first iteration, one obtains q̄1,u =
ε(1 − 3α)+ qc

u + η1(−α/U) and q̄1,d = β(1 − 3α)+ qc
d + ζ1(−α/(1 − U)). By the

second iteration, q̄2,u = ε(1−3α)2+qc
u+η1((3α2−α)/U)+η2(−α/U) and q̄2,d =
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Table 1 Cost coefficients for each player and technology

Technology 1 Technology 2

Prod. Coeff. Inv. Coeff. Prod. Coeff. Inv. Coeff.

Player 1 (1,1) (1,0) (1,1) (1,1)
Player 2 (4,2) (2,0) (2,1) (1,2)
Player 3 (3,4) (0,4) (3,1) (1,3)
Player 4 (4,4) (4,0) (3,1) (1,4)

β(1 − 3α)2 + qc
d + ζ1((3α2 − α)/(1 − U)) + ζ2(−α/(1 − U)). Similar to the proof

of Proposition 3, one can show that at iterations T and T ′, q̄T,u = ε(1−z)T +qc
u

− (α/U)
∑T

j=1(1 − z)T−jηj and q̄T ′,d = β(1 − z)T ′ + qc
d − (α/(1 − U))

∑T ′
j=1(1 −

z)T ′−jζj, where z = 3α, with the complementarity conditions (λc
u +ηT)(K + I0 −

q∗
T,u) = 0 and (λc

d +ζT ′)(K+I0 −q∗
T ′,d) = 0. Let o = max{T, T ′}. Again, by using

the proof of Proposition 3, it is shown that
∣∣ηj

∣∣ ≤ 2 |ε| (1−α)j−1,
∣∣ζj

∣∣ ≤ 2 |β| (1−
α)j−1 for j = 1, 2, . . . , o, and

∣∣∣(α/U)
∑T

j=1(1 − z)T−jηj

∣∣∣ ≤ 2(α/U) |ε| T(1 −
α)T−1 → 0,

∣∣∣(α/(1 − U))
∑T ′

j=1(1 − z)T ′−jζj

∣∣∣ ≤ 2(α/(1−U)) |β| T ′(1−α)T ′−1 →
0 as o increases. Thus, q̄o,u → qc

u and q̄o,d → qc
d . That is, for each choice of I,

(qc
s , λc

s)s is obtained. Let Im, Fm(Im) and λc
m,s be iteration m investment level,

its cost and the shadow prices of inequality constraints. Note that, here, the first
iteration is because of the investment choice, and the second type of iteration
is due to choosing optimal production quantities for each level of investment
choice. Here for every investment iteration m, λT,s → λc

s for large T, since
q̄T,s → qc

s . The Step 4 suggests that once Fm(Im)−Fm′ (Im′ )
Im−Im′ = ∑

s λm,s holds for
some m > m′ then Im is the optimal investment level. But this is true since
F ′

m(Im) ≈ Fm(Im)−Fm′ (Im′ )
Im−Im′ and the equilibrium first order condition yields that

F ′(I) = λc
u + λc

d → λm,u + λm,d for I > 0. Hence the result follows. 	

Next, we present a simple example to illustrate how the FB game equilibrium

outcomes converge to the CN game equilibrium outcomes.

Example 1 Consider a four-player market in which each player has two avail-
able technologies for production of a homogeneous good. Assume affine mar-
ginal production and investment cost functions. For each player i = 1, 2, 3, 4
and for each technology k = 1, 2, the production marginal cost function fol-
lows c′

i,k = ai,k + bi,kqi,k, the investment marginal cost function follows F ′
i,k =

gi,k + hi,kIi,k, where the cost parameters g, h, a, b are provided in Table 1.
Let each player have 7 units of initial production capacity from each tech-

nology. Let the demand scenarios in Fig. 1 be D = 90, δ = 10 , and U = 0.5.

Implementation of the FB game under uncertainty is depicted below. For the
sake of brevity we only report player 1’s production quantities from technology
1 for periods 0 and 1, and all players’ expected profit levels versus iterations
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Fig. 2 Convergence of Player 1’s production quantities from tech 1 for time=0 and time=1 down
and up states, respectively

Fig. 3 Convergence of players’ total expected profits

(the number of information exchanges with the auctioneer). In Fig. 2 after sev-
eral oscillations the quantities converge to the CN equilibrium quantity levels.
In Fig. 3 we plot expected profits at the optimal investment levels. As can be
observed the FB game artificial equilibrium outcomes lead to concave-looking
expected profit function. Indeed this should be expected since the cost functions
are quadratic and demand is linear.

After several information (i.e., price and quantity) exchanges between play-
ers and the auctioneer, players produce and invest actual amounts. The number
of iterations varies for each state and time period. However, in this example, the
algorithm converges relatively quickly after several iterations. When we make
several runs with different parameterizations we observe that initialization of
the quantities in Step 0 of the FB game plays little role in determining whether
the CN game equilibrium outcomes are reached. Nevertheless, it may increase
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the number of total iterations. This may stem from the fact that the short-term
memory process (i.e., convex combinations of the quantities) picks up the local
optimum in each iteration, hence the initialization levels are not very relevant
for reaching the CN equilibrium quantities.

4 Concluding remarks

In this paper we show market outcome equivalence of two different dynamic
games under demand uncertainty with different information structures and
market rules. The FB game setting may be observed in a market where a new
product is introduced and exchanged in an auction format such that firms do
not have full information about their opponents and are unable to predict the
market demand accurately. If the good is exchanged via an auction mechanism
under uncertainty, the FB game setting will predict optimal market outcomes.
We have shown that information exchanges between the auctioneer and the
players lead to Cournot–Nash equilibrium outcomes, if the firms play according
to the FB game-setting. Alternatively, the FB game structure may be consid-
ered as an algorithm that solves a large-scale CN game by decomposing the
individual maximization problem into sub-problems. However, there are some
limitations to the FB game solution method. For example, the algorithm may
not converge to equilibrium or it may be inefficient from the computational-
time point of view if the functional form of demand is complicated. In future
research we will examine a generalization of the algorithm for different market
structures.
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