University of Guelph College of Biological Science Department of Molecular and Cellular Biology COURSE OUTLINE

BIOC*3560 Structure and Function in Biochemistry Winter 2016

Course description

This course develops the understanding of biochemical processes by examining the molecular mechanisms underlying the regulation of specific cellular and physiological systems. Examples may include: oxygen binding and transport; regulation of enzyme function; carbohydrate and lipid metabolic pathways and metabolic integration; structure of membranes and membrane proteins; and membrane transport and signaling.

Prerequisite(s): BIOC*2580

Teaching team

Dr. Steffen Graether; SSC 2255, ext. 56457 Dr. John Dawson, SSC 2248, ext. 53867

Email

bioc356w@uoguelph.ca

Please do not send course related emails to the instructors' personal email addresses.

Lectures:

Mon., Wed., Fri., 9:30 a.m. - 10:20 a.m.; RozH104

Office hours:

Dr. Graether: Mondays 1-2:30 pm, Thursdays 10:30 am - noon

Dr. Dawson: TBD

Other times may be arranged by appointment upon request.

Intended Learning outcomes

By the end of this course, successful students will be able to:

- 1. Describe structure/function relationships of proteins at the amino acid level, and how this contributes to ligand-binding and enzyme activity.
- 2. Describe the regulation of proteins by post-translational modifications and allosteric effectors.
- 3. Explain how regulatory enzymes are controlled in the regulation of pathways of carbohydrate and fatty acid metabolism in mammals. Explain the biochemical mechanisms that mediate signaling of these pathways at the tissue, organ and organismal level.
- 4. Describe how proteins and lipids define the structure and function of biological membranes. Explain the ways in which substances can be transported across membranes and the energy requirements for such transport.

5. Describe the biochemical mechanisms by which signals are propagated across the membrane and within a cell.

Course Resources

There is a Courselink site for this course.

Textbook

<u>Recommended</u>: "Lehninger Principles of Biochemistry" by Nelson and Cox, 6th **or** 5th Edition, Freeman Publishers; available at the bookstore. Several copies of the 5th and 6th Editions are on reserve (2 hour loan) at the Library Reserve Desk.

Problem sets

Periodically throughout the semester, problem sets will be posted. These exercises are for review/practice purposes; answers will be posted, no marks will be assigned.

Course Reading

A reading list for the lectures is provided at the end of this course outline.

Methods of Assessment

Students will find details of all Assessments on CourseLink.

Assessment

Form of Assessment	Weight of Assessment
Online Quiz #1	2.5%
Online Quiz #2	2.5%
Midterm Examination	35%
Online Quiz #3	2.5%
Online Quiz #4	2.5%
Final Examination	55%

All assessments are required. If the mid-term or online assignment is not written due to an illness, the student is required to provide appropriate documentation. In this case, the final will be reweighted appropriately.

Examination Schedule:

Midterm Examination: March 2, 2016, 5:45 pm – 6:45 pm, Alex 100 & 200. Persons with a scheduled academic conflict should inform the instructor by e-mail, stating the conflicting course, by Monday, January 25th. Alternative midterm exams will be arranged where appropriate and possible.

Final Examination: April 21, 2016, 7 pm – 9 pm (location to be determined). The final exam is cumulative. Students who score a significantly higher grade on the Final Exam, compared with the midterm, may receive a higher weighting of the final exam (midterm: 20%, final: 70%), at our discretion. A significantly higher grade is one that is 25 percentage points or more higher.

Re-grading

Midterm papers may be returned to us for correction of grading errors, only within one week of the return of the paper to the student. We may refuse to re-grade a paper at our discretion.

Exam aids

No materials may be brought to the exam except for pencils, pens and an eraser. No calculators, electronic devices (including cell phones), pencil cases, purses, bags, tissue boxes or other containers may be present. All materials are subject to inspection.

Drop and Add

Notification is **not** needed for dropping the course before the **DROP** deadline (40th class day; March 11th,2016). Program approval is only needed for drops and adds if your category is "Special" or "Provisional".

Important Dates

A list of important dates is available in the <u>Undergraduate Calendar</u>.

Course and University Policies

When You Cannot Meet a Course Requirement

When you find yourself unable to meet an in-course requirement because of illness or compassionate reasons, please advise the course instructor (or designated person, such as a teaching assistant) in writing, with your name, id#, and e-mail contact. See the undergraduate calendar for information on regulations and procedures for <u>Academic Consideration</u>.

Accessibility

The University of Guelph is committed to creating a barrier-free environment. Providing services for students is a shared responsibility among students, faculty and administrators. This relationship is based on respect of individual rights, the dignity of the individual and the University community's shared commitment to an open and supportive learning environment. Students requiring service or accommodation, whether due to an identified, ongoing disability or a short-term disability should contact Student Accessibility Services (formerly the Centre for Students with Disabilities) as soon as possible.

For more information, contact <u>Student Accessibility Services</u> at 519-824-4120 ext. 56208 or email csd@uoguelph.ca.

Academic Misconduct

The University of Guelph is committed to upholding the highest standards of academic integrity and it is the responsibility of all members of the University community – faculty, staff, and students – to be aware of what constitutes academic misconduct and to do as much as possible to prevent academic offences from occurring. University of Guelph students have the responsibility of abiding by the University's policy on academic misconduct regardless of their location of study; faculty, staff and students have the responsibility of supporting an environment that discourages misconduct. Students need to remain aware that instructors have access to and the right to use electronic and other means of detection.

Please note: Whether or not a student intended to commit academic misconduct is not relevant for a finding of guilt. Hurried or careless submission of assignments does not excuse students from responsibility for verifying the academic integrity of their work before submitting it. Students who are in any doubt as to whether an action on their part could be construed as an academic offence should consult with a faculty member or faculty advisor.

The Academic Misconduct Policy is detailed in the Undergraduate Calendar.

E-mail Communication

As per university regulations, all students are required to check their <uoguelph.ca> e-mail account regularly: e-mail is the official route of communication between the University and its students.

Drop Date

The last date to drop one-semester courses, without academic penalty, is the 40th class day. To confirm the actual date please see the schedule of dates in the Undergraduate Calendar. For

regulations and procedures for Dropping Courses, see the Undergraduate Calendar.

Copies of out-of-class assignments

Keep paper and/or other reliable back-up copies of all out-of-class assignments: you may be asked to resubmit work at any time.

Recording of Materials

Presentations which are made in relation to course work—including lectures—cannot be recorded or copied without the permission of the presenter, whether the instructor, a classmate or guest lecturer. Material recorded with permission is restricted to use for that course unless further permission is granted.

Grading

Indicate all course policies regarding in-semester tests and assignment submissions, including time and place for submission of assignments and explicit penalties for late submissions.

Campus Resources

If you are concerned about any aspect of your academic program:

Make an appointment with a Program Counsellor in your degree program.

If you are struggling to succeed academically:

There are numerous academic resources offered by the <u>Learning Commons</u> including, Supported Learning Groups for a variety of courses, workshops related to time management, taking multiple choice exams, and general study skills. You can also set up individualized appointments with a learning specialist.

If you are struggling with personal or health issues:

<u>Counselling services</u> offers individualized appointments to help students work through personal struggles that may be impacting their academic performance.

<u>Student Health Services</u> is located on campus and is available to provide medical attention. For support related to stress and anxiety, besides Health Services and Counselling Services, <u>Kathy Somers</u> runs training workshops and one-on-one sessions related to stress management and high performance situations.

If you have a documented disability or think you may have a disability:

<u>Student Accessibility Services</u> (SAS) formerly Centre for Students with Disabilities can provide services and support for students with a documented learning or physical disability. They can also provide information about how to be tested for a learning disability.

Course Content: BIOC*3560 - Winter 2016 Assigned Reading

Chapter and page numbers below are from **Lehninger Principles of Biochemistry 6th** and **5th Editions.** We will be using figures mainly from the 6th Ed.; however, the material covered by the course is similar in both, and purchase of the 6th Ed. is not required.

<u>Part A</u> - Regulation of Protein Function (Chapters 5, 6 and 12)

	6th Ed.	5th Ed.
The Oxygen-binding Proteins		
Protein-ligand Interactions I	157-158	153-154
Myoglobin Structure/Function	158-159	154-155
Protein-ligand Interactions II	159-163	155-158
Hemoglobin	163-167	158-162
Cooperative Ligand Binding, Hill Equation	167-169	162-165
Hemoglobin and O ₂ /H ⁺ /CO ₂ Transport	169-172 +	165-169 +
	Box 5-1	Box 5-1
Protein Interactions Modulated by Chemical Energy	179-181	175-176
	182-184	178-179
Regulatory Enzymes		
Review Enzyme Function	189-203	183-198
Regulatory Enzymes:	226-228	220-222
Enzyme Regulation by Reversible Covalent Modification	228-229	223-224
Phosphorylation		
glycogen phosphorylase, glycogen synthase:	229-231	224-226
Modulation by Proteolytic Cleavage:	231-232	226-228
chymotrypsin	214-218	205-209
caspases	492-494	477-478
Complex Regulation of Enzyme Activity	235-236	227
cyclin-dependent kinases	484-488	469-473

<u>Research article:</u> Stieglitz *et al.* Structure of the E. coli Aspartate Transcarbamoylase Trapped in the Middle of the Catalytic Cycle (2005) *Journal of Molecular Biology* 352, 478-486.

Part B - Regulation and Integration of Carbohydrate Metabolism (Chapters 14, 15)

	6th Ed.	5th Ed.
Carbohydrate Metabolism		
Regulation of Metabolic Pathways	501-504	485-488
Review of Glycolysis	543-555	527-539
Gluconeogenesis	568-575	551-558
Pentose Phosphate Pathway	575-580	558-563
Reciprocal Regulation of Glycolysis and Gluconeogenesis	601-608	582-590
Glycogen Metabolism	612-619	594-601
Coordinated Regulation of Glycogen Synthesis		
and Breakdown	620-627	602-609

Part C - Regulation and Integration of Lipid Metabolism (Chapters 17, 21, 23)

<u>Lipid Metabolism</u>		
Fatty Acid Catabolism	667-672	647-652
Mobilization and Oxidation of Fatty Acids	672-682	652-661
Ketone Bodies	686-688	666-668
Fatty Acid Biosynthesis	833-848	805-820
Triacylglycerol Metabolism	848-850	820-822
Integration of Metabolism		
Tissue-specific Metabolism	939-951	912-922
Hormonal Regulation of Fuel Metabolism	623-627,	605-609,
	951-959	922-929
Diabetes	959-960	929-930
Part D – Membranes, Transport and Biosignalling (Chap	ters 10-12)	
6th Ed. 5th Ed.		
Membranes and Transport		
Review of Lipids	357-362	343-349
Membrane Lipids	362-370	
Membrane Structure and Function	385-389	371-374
Membrane Proteins	389-395	374-381
Membrane Dynamics and Fusion	395-402	381-389
Transport Across Membranes; ATPase Ion Pumps	402-420	389-406
Ion Selectivity	420-427	406-413
Biochemical Signaling		
Introduction to Biosignaling	433-437,	•
	Box 12-1	Box 12-1
Gated Ion Channels; Synaptic Transmission	410-470,	449-455
Receptor Enzymes	453-459	439-445
G Protein-coupled Receptors and 2 nd Messengers	437-447	423-432
Steroid Hormone Receptors	471-472,	456-457,
1182-1184 1143-1144		