Worldwide, *Staphylococcus aureus* is a leading cause of bloodstream infections. Compared to growth in laboratory media, it has been demonstrated that *S. aureus*, during growth in blood or serum, highly expresses genes encoding cytolytic toxins as well as several iron acquisition systems.

My laboratory has been particularly interested in the iron acquisition mechanisms operating in *S. aureus*. During iron-restricted growth, *Staphylococcus aureus* synthesizes two citric acid-containing siderophores, called staphyloferrin A and staphyloferrin B; these siderophores are functionally redundant in that either can remove iron from transferrin and deliver it to bacterial cells. What is more, the iron-regulated surface determinants (Isp proteins), which are involved in scavenging heme-iron from haemoglobin, are also highly expressed during iron-restricted growth.

In this talk, I will discuss details of the siderophore systems, as well as the heme scavenging system, providing perspective on how *S. aureus* possesses incredible flexibility in how it obtains precious metals such as iron.