
INTRODUCTION

Membrane ruffles are thin cell surface 
membrane protrusions that are enriched 
with filamentous actin (F-actin). These 
structures have been widely observed 
in cultured eukaryotic cells, including 
both stationary and migrating fibro-
blasts (1–3). F-actin-rich membrane 
ruffles have also been observed in 
vivo, for example in embryonic cells 
(4). Formation of ruffles in migrating 
cells is known to be closely related to 
establishing cell polarity; in general, 
the formation of ruffles is restricted to 
the leading edge of migrating cells (5). 
The polarized distributions of cellular 
components, such as matrix-metal-
loproteinase 2 (MMP2) (6), aquaporin 
1 (AQP-1) (7), high-affinity αvβ3 
integrin (8), phosphatidylinositol-4, 
5-bisphosphate [PI(4,5)P2] (9), and 
endocytosed epidermal growth factor 
receptors (EGFRs) (10) have also been 
observed to correlate with sites of 
ruffle formation. While recent studies 
indicate that ruffles are compartments 
of inhibited actin turnover that correlate 
with inefficient lamellipodia adhesion 
(11), the biochemical mechanisms 
that regulate ruffle formation are not 
completely understood.

In analyses of ruffles, phase contrast 
and fluorescent microscopy are widely 
used techniques. Ruffles are commonly 
identified through their unique 
morphology, observed in cells stained 
with fluorescently labeled phalloidin 
to reveal F-actin-containing structures. 
In dorsal views of two-dimensional 
(2-D) cell images, the morphology of 
F-actin-rich ruffles is quite consistent 
between different cell lines, including 
Chinese hamster ovary-K1 (CHO-K1), 
COS-7, NIH 3T3, and embryonic fibro-
blasts, and can be described as sharp 
sinuous line-shaped structures (1). 
Currently, comparison of cellular ruffle 
formation under different experimental 
conditions is generally qualitative or 
semiquantitative. Ruffle structures are 
often defined using manual tracing and 
thresholding methods (12–14). These 
manual operations are time-consuming 
and thus limit the number of images 
that can be analyzed. The repeatability 
of these manual operations can be poor 
and may also reduce the accuracy of 
the analyses.

Here, we report that rapid and 
accurate segmentation of ruffles from 
2-D images of cells can be achieved 
through an automated method based on 
well-established image processing and 

analysis methods. Line-shaped ruffles 
were detected using line detectors, 
and the ruffles were accurately 
separated from surrounding cellular 
structures through thresholding 
methods. Automated categorizing of 
the segmented line structures enabled 
accurate quantification of the ruffles. 
This automated approach is efficient 
and reliable and hence can serve 
as a powerful tool in studies of the 
mechanism of ruffle formation.

MATERIALS AND METHODS

Cells, Transfection, and Reagents

CHO-K1 cells were maintained in 
Dulbecco’s modified Eagle’s medium 
(DMEM; Sigma-Aldrich, St. Louis, 
MO, USA) containing 10% fetal bovine 
serum (FBS; Sigma-Aldrich), at 37°C 
and 5% CO2. Phorbol-12-myristate-
13-acetate (PMA) was purchased from 
Sigma-Aldrich. pEGFP-N1 vector was 
purchased from Clontech Laboratories 
(Palo Alto, CA, USA). Rhodamine-
phalloidin and 4′6-diamidino-2-phenyl-
indole (DAPI) were purchased from 
Molecular Probes (Eugene, OR, USA), 
and fluorescent mounting medium 
was obtained from DakoCytomation 
(Carpinteria, CA, USA).

Cell Stimulation and 
Immunofluorescent Labeling

To induce ruffle formation, cells 
were washed with cold phosphate-
buffered saline (PBS) three times and 
detached with 5 mM EDTA in PBS. 
Detached cells were then plated subcon-
fluently on 10 μg/mL fibronectin-coated 
glass coverslips and allowed to attach 
and spread on the coverslips for 3 h in 
serum-free DMEM at 37°C with 5% 
CO2. Plated cells were treated with 500 
nM PMA in DMEM or DMEM alone 
for 10 min, to induce ruffles or serve as 
control, respectively. Cells were fixed 
with 4% paraformaldehyde at 4°C for 
30 min and permeabilized with 0.1% 
Triton® X-100 in PBS for 10 min. Fixed 
and permeabilized cells were washed 
three times with PBS and incubated in 
5% skim milk/PBS blocking solution 
for 1 h. After three washes in PBS, 
cells were incubated with 0.04 U/mL 
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rhodamine-phalloidin for 30 min. Cells 
were washed three times and then 
stained with 300 nM DAPI for 5 min 
to label nuclei. After two more washes, 
cells were mounted on glass slides using 
fluorescent mounting medium.

Image Acquisition and Outlining 
Cell Boundaries

Labeled cells were viewed using 
a Leica TCS SP2 confocal imaging 
station equipped with a Leica DM-
IRE2 inverted microscope and a 
Leica 63× oil immersion lens (Leica 
Microsystems, Heidelberg, Germany). 
Cells were optically sectioned along the 
z-axis from ventral to dorsal surfaces. 
The voxel size was 0.23 μm in each of 
the x, y, and z dimensions. From the 
acquired z-series, a projection image, 
which offered a high-resolution 2-D 
overview, was generated for each cell. 
The projection image was generated by 
overlaying the optical sections on top 
of each other (the ZProject/Sum Slices 
function in ImageJ software).

Cell boundaries were detected 
in cells stained with rhodamine-

phalloidin and confirmed in phase 
contrast images and in samples trans-
fected with green fluorescent protein 
(GFP) as a marker of the cytoplasm. 
To define cell boundaries in projected 
images, we used Otsu’s method, which 
separates image components based on 
analyzing the variance of their intensity 
values (15). After being processed by 
Otsu’s method, a projected cell image, 
in which the cellular components 
were separated from the background, 
was generated for each cell. On this 
projection image, the boundary for 
a cell was easily defined by the outer 
most nonzero pixels around the cell 
image. The boundary was demarcated 
in the x and y dimensions, which 
was acceptable given that there were 
generally few deep invaginations along 
cell boundaries.

Image Processing

ImageJ for Windows (NIH Images), 
was used to isolate ruffle structures 
from within the outlined cell bound-
aries in the projection images. For 
isolating ruffles, projection images 

were generated from the dorsal 
portion of cells, defined as sections 
above the fourth z-section from the 
ventral surface, which did not contain 
prominent F-actin stress fibers. Isolation 
of ruffles was achieved through three 
steps: first, the line-shaped structures 
on the 2-D projection image were 
located using a line detection method—
2-D difference-of-Gaussian (DoG) 
filtering. The 2-D DoG filtering was 
implemented according to Equation 1: 

in which the image generated with the 
2-D Gaussian filter of σ2 (1.28) was 
subtracted from the image generated 
with that of σ1 (0.8). Here, the ratio 
1:1.6 of σ1:σ2 (Equation 1) was used to 
minimize the bandwidth and maintain 
sensitivity (16). Second, the detected 
lines on the 2-D DoG filtered image 
were further segregated by a threshold 
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Table 1. Shape Parameters Used in this Protocol

Moment Descriptors Equation
(Reference)

Description

M1, M2 Given by (23) These two lowest order moment invariants are independent of object position, 
size and orientation, and are useful for object recognition.

Measured Metrics — Description

Area (A) The area of an image feature is expressed as the total pixel numbers in the 
feature.

Perimeter (P) The perimeter of an image feature is the length of its outside boundary.

Maximum Feret diameter (Fmax) The maximum Feret diameter is the longest distance between any two points on 
the boundary of the image. 

Major, Minor The major axis (Major) and minor axis (Minor) are the primary and secondary 
axis of the best fitting ellipse to the image feature.

Bounding Rectangle The bounding rectangle is defined as the smallest rectangle enclosing the 
selection.

Geometric Descriptors Equation
(Reference)

Description

Form Factor P2

             4πA        (24)
Form Factor has values of 1.0 (a perfect circle) and higher. Filamentous structures 
often have large Form values.

Anisometry Major
           Minor      (25)

Anisometry has values of 1.0 (a perfect circle) and higher. Filamentous structures 
often have large Anisometry values.

Curl Fmax

( P - 2A )
           2    P      (17)

The denominator in Curl is used to estimate Fiber Length (17). For fibers that are 
nearly straight, this approaches 1.0, and it becomes much smaller as the fiber is 
more curled.

Measured metrics were given by ImageJ for Windows 1.34I (26).

[Eq. 1]



SHORT TECHNICAL REPORTS

748 BioTechniques Vol. 40, No. 6 (2006)

method—the fixed percentage setting 
(17). The threshold value for each 
individual 2-D DoG filtered image 
was adjusted to include 15% of the 
projected cell area within the positive 
extreme value on the 2-D DoG filtered 
images. Several fixed percentage 
settings were tried, including 10% 
and 20%; however, a setting of 15% 
reliably produced images containing 
structures that were consistent with 
the ruffles observed in the cells by 
visual inspection. Third, among all the 
segmented line structures, line features 
with the longer dimension of the 
bounding rectangle (Table 1) greater 
than 20 pixels (approximately 4.6 μm) 
were considered as potential ruffles. 
The 20 pixel lower limit was deter-
mined by trial and error. Values below 
this resulted in images containing a 
large population of structures that 
precluded manual classification and 
therefore could not be comparatively 
analyzed. The images of extracted 
ruffle structures were then used for 
further classification.

Image Classification and Ruffle 
Quantification

Image classification was used to 
categorize the isolated potential ruffle 
images. Automated image classification 
was achieved through logistic regression 
model. Logistic regression (18) is a 
well-established statistical method for 
computational classification associated 
with binary outcomes (e.g., ruffles or 
non-ruffles). A set of training image 
features was visually inspected and 
categorized as either ruffles or non-
ruffles manually. Shape parameters, 
including three geometric descriptors, 
Form Factor, Anisometry, and Curl, 
and two moment invariants, M1 and 
M2, were collected for these training 
images (Table 1). The distribution of 
each shape parameter was analyzed 
for significance of difference between 
ruffles and non-ruffles. Multivariate 
logistic regression analysis was then 
used to assess the relationship between 
image group membership and the five 
shape parameters. A logistic regression 
equation was then built for automated 
image classification using the output 
of the multivariate logistic regression 
analysis.

An integrated macro (see the supple-
mentary material available at www.
BioTechniques.com) for ImageJ was 
developed to achieve rapid imple-
mentation of the ruffle quantification 
protocol. Ruffle quantification was 
done by calculating a ruffle index for 
each cell. After image classification, the 
total area of ruffle features of a cell was 
summed for that cell. A ruffle index was 
calculated for each cell through dividing 
the summed ruffle area in a cell by the 
projected area of that cell and multi-
plying by a factor of 100.

Statistical Analysis

Statistical analyses were done using 
Microsoft® Excel® 2002 and SPSS® 
12.0 (SPSS Inc., Chicago, IL, USA). 
Analysis for significance of difference 
between two groups was carried out 
either by Student’s t-test when normal 
distribution can be assumed or by 
Mann-Whitney U test for very skewed 
data sets. Logistic regression, using 
SPSS 12.0, was used to analyze the 
relationship between image group 
membership (ruffles or non-ruffles) and 
the five shape parameters. For logistic 
regression, the dependent variable was 
the group membership of image objects. 
The independent variables or predictors 
were M1, M2, Anisometry, Form Factor, 
and Curl. The square root transformation 
for M2 (sM2), and Box-Tidwell transfor-
mation for Curl [Curl × Ln(Curl)] were 
used to achieve best fit (18).

RESULTS AND DISCUSSION

Extraction of Ruffle Images

In cultured CHO-K1 cells, F-actin-
containing ruffles generally protrude into 
the space above the cell. When ruffling 
CHO-K1 cells were imaged with a laser-
scanning confocal microscope, it was 
clear that the ruffles mainly appeared 
on the dorsal portion of the cell, with 
ruffles at different heights above the 
surfaces of cells. Dorsal optical sections 
in a z-series were therefore combined 
to generate a projection image for each 
cell. The resulting image was a sum of 
all dorsal F-actin structures, including 
sinuous line-shaped ruffles (Figure 
1A). We chose to acquire cell images 

by optical sectioning using confocal 
microscopy to obtain images of high 
resolution while developing our method 
of analysis. Images acquired using other 
methods, such as conventional light 
microscopy, would also be suitable for 
this protocol; although, in some cases, 
preprocessing, such as deconvolution, 
may be necessary to achieve sufficient 
resolution.

In one-dimensional (1-D) intensity 
profiles of ruffle structures, rapid 
intensity changes over short distances 
are clearly observed (Figure 1, A and 
G). This type of intensity change is 
characteristic of line structures (19). 
Line structures can be detected by a 
genre of image processing methods 
called edge detectors. The 2-D DoG 
filter is an edge detector with easy 
implementation and good performance 
in line detection (20,21). In CHO-K1 
cells, we found that ruffles are thin 
lines with their width generally limited 
to 2–3 pixels (and no greater than 
5 pixels) or approximately 1.2 μm. 
Based on this observation, a σ1 value 
of 0.8, which is equivalent to the 3 × 
3 2-D Gaussian filter, was found to be 
satisfactory during 2-D DoG filtering 
(Figure 1B). The negative intensity 
values generated by the 2-D DoG filter 
were stored in the format of 32-bit 
floating-point grayscale images, and 
hence no rescaling was necessary.

On the 2-D DoG filtered images, 
line structures had high and positive 
intensity values, and the regions 
surrounding those line structures 
had low and negative values. The 
remaining regions had intermediate 
intensity values fluctuating around 
zero (Figure 1, B and G). This distri-
bution was consistent for the 2-D 
DoG filtered cell images and was 
reflected by their Gaussian-shape 
intensity histograms (Figure 1F). 
There are three parts in the intensity 
histograms: (i) the positive values (the 
right end), (ii) the negative values (the 
left end), and (iii) the medium values 
(the middle part), which contained the 
detected lines, regions surrounding 
lines, and the remaining regions, 
respectively. This pattern provides 
a simple method to segment the 
detected lines from other structures. 
A minimal threshold intensity value 
can be assigned to each individual 
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2-D DoG filtered image, such that, on 
the 2-D DoG filtered image, cellular 
regions with their intensity values 
no smaller than the threshold values 
were retained and other regions were 
cleared. This threshold method—fixed 
percentage setting (17)—was used 
to find the minimal threshold value 
for each 2-D DoG filtered image. We 
used the recommended 15% fixed 
percentage (17). The total area of the 
retained cellular regions accounted 

for 15% of the projected cellular area. 
This process resulted in successful 
isolation of the detected lines (Figure 
1D).

Automated Image Classification

To inspect the composition of 
the extracted ruffles and generate 
the parameters in Table 2, a set of 
training image features, which was 
composed of all 5917 extracted 

potential ruffle images from 945 CHO 
cells in 38 experiments, was manually 
classified. Ruffles were defined as 
sinuous, line-shaped structures with 
sharp boundaries. The majority of 
the extracted image features were 
ruffles, with the percentage of ruffle 
images being 73.9% and that of non-
ruffles being 26.1%. Since manual 
classification was based on inspecting 
the detailed shape characteristics of 
extracted image features, we sought to 
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Figure 1. Extraction of ruffle features from 
confocal cell images. (A) A projection image 
of F-actin-containing structures in a phorbol-12-
myristate-13-acetate (PMA)-stimulated Chinese 
hamster ovary (CHO) cell stained with rhoda-
mine-labeled phalloidin was generated for a CHO 
cell labeled with phalloidin. The cell was opti-
cally sectioned by confocal microscopy, and the 
dorsal portion of the z-series was used to generate 
the projection image. Outline of cell boundary is 
indicated. (B) The dorsal projection image in 
panel A was processed with the two-dimensional 
(2-D) difference-of-Gaussian (DoG) filter. The 2-
D DoG filtering was implemented by subtracting 
the image filtered with 2-D Gaussian of kernel 
1.28 from 2-D Gaussian of kernel 0.8. As shown 
on the insert, which is the enlarged image of the 
boxed region, the line feature (dashed curve) has 
positive and high intensity values (lighter color), 
the regions surrounding the line (arrows) have 
low and negative values (darker color), and the 
remaining regions (asterisk) have intermediate 
intensity values (gray color). (C) The 2-D DoG 
filtered image in panel B) was thresholded us-
ing the fixed percentage setting. The total area 
of these features accounts for 15% of the cal-
culated projection cell area. (D) Image features 
with the longer dimension of the bounding rect-
angle greater than 20 pixels were extracted from 
the dorsal projection images in panel C. (E and 
F) Intensity histograms for the dorsal projection 
image in panel A and 2-D DoG filtered image in 
panel B, respectively. The Gaussian shaped histo-
gram in panel F was consistent for all 2-D DoG 
images. Boxed region in panel F contains cellu-
lar features above the minimum threshold value 
(14.74 for this image). (G) Two one-dimensional 
(1-D) intensity profiles represent every pixel on 
the lines in panels A and B, respectively. The hor-
izontal position (x-axis) starts from the leftmost 
pixels on the images. The intensity curves for 
the lines in panels A and B are plotted using the 
left and right y-axes, respectively. Three ruffles 
(arrows in panels A and B) are also indicated by 
corresponding arrows on the profiles. The curves 
show that ruffles represent lines on this inten-
sity profile. The black curve shows that ruffles 
(arrows) have high and positive values, regions 
surrounding ruffles (arrowheads) have low and 
negative values, and the remaining regions are 
intermediate in value. Scale bar in panel A rep-
resents 10 μm.

A B

C D
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automatically classify features through 
computational analysis of the shape 
parameters in the extracted images. 
Five shape parameters, Form Factor, 
Anisometry, Curl, M1, and M2, (Table 
2) were measured for all the training 
images. Values of each parameter, 
expressed as mean ± standard error, 
tended to be larger for ruffles than 
for non-ruffles (Table 2). Statistical 
analysis (Mann-Whitney U test) 
verified that the distribution of each 
parameter was significantly different 
between ruffles and non-ruffles (Table 
2). This result indicates the existence 
of correlation between values of each 
shape parameter and image group 
membership. Multivariate logistic 

regression analysis was further used to 
assess the reliability of the parameter-
based classification. All five shape 
parameters, Form Factor, Anisometry, 
Curl, M1, and M2, were entered as 
independent variables (or predictors). 
Transformation was made for two of 
the shape parameters for best fit, as 
determined by trial and error; square 
root value of M2 was used, and Curl 
was Box-Tidwell transformed. The 
group membership of image features 
was entered as dependent variables 
with 1 assigned to ruffles and 0 
assigned to non-ruffles. The results 
showed that the logistic regression 
model, and coefficients for each 
shape parameter and the constant 

(or intercept), were all significant 
(Table 2). The statistical significance 
was also verified by 50-50 cross- 
examination. This further indicates 
a correlation between shape param-
eters and image group membership 
and suggests the ability to classify 
image features through their shape 
parameters. A logistic regression 
equation (Equation 2) was then 
built from the results of the logistic 
regression analysis of training images: 

R
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x

Control     PMA     Control    PMA

Automated              Manual
Figure 2. Automated quantification of phorbol-12-myristate-13-acetate (PMA)-induced ruffle formation. Chinese hamster ovary (CHO) cells were treat-
ed with 500 nM PMA in Dulbecco’s modified Eagle’s medium (DMEM) or DMEM alone for 10 min, fixed, stained with rhodamine-phalloidin, and imaged as 
described. (A) Control, untreated cells. (B) PMA-treated cells. Arrows point to ruffle structures. (C) Calculated ruffle indices (expressed as mean ± sem) from 
manual and automated classification. Control, cells were treated with DMEM alone; PMA, cells were treated with 500 nM PMA for 10 min. Student’s t-test 
showed that the differences between the control and PMA-treated samples are significant for both methods of analysis, with two-tailed P values being 0.00312 
(<0.01) for the automated protocol and 0.00251 (<0.01) for the manual scoring. Results are from three independent experiments with >25 cells per experiment. 
Scale bar represents 10 μm.

Table 2. Associations Between Image Group Memberships and Measured Parameters

Parameters
Values of Parameters

(mean ± SEM ) 
σa

(2-tailed)
βb SEM 

for β
σ

for β
95% CI

for exp (β)

Ruffles
(4371 images)

Non-Ruffles
(1546 images)

Lower Upper

M1 1.370 ± 0.0129 0.597 ± 0.00427 0.000 21.154 1.273 0.000 1.269 × 108 1.864 × 1010

M2c 2.151 ± 0.0483 0.235 ± 0.00575 0.000 -13.146 1.267 0.000 2.340 × 10-5 1.630 × 10-7

Form Factor 8.129 ± 0.0854 6.919 ± 0.0727 0.017 -0.336 0.045 0.000 0.654 0.781

Anisometry 6.449 ± 0.0482 2.838 ± 0.0268 0.000 0.361 0.103 0.000 1.171 1.756

Curld 0.858 ± 0.0018 0.638 ± 0.00323 0.000 15.216 1.349 0.000 2.886 × 105 5.709 × 107

Constant — — — -3.097 0.503 0.000 — —

CI, confidence interval.
aThe distributions of each measured parameter were evaluated for significance of difference.
bThe relationship between image group memberships and measured parameters was evaluated by multivariate logistic regression.
cThe value of M2 was square root transformed in the multivariate logistic regression.
dThe value of Curl was Box-Tidwell transformed in the multivariate logistic regression.

A B C

M
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P
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�
146.131154.21097.3]

1
ln[   

btCAFsM ������ 216.15361.0336.02   

[Eq. 2]
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in which P represents the probability 
for an image feature to be a ruffle, sM2 
is the square root transformed M2, F is 
Form Factor, A is Anisometry, and btC 
is the Box-Tidwell transformed Curl. 
This equation was further used for 
automated image classification.

Evaluation of Ruffle Quantification 
Protocol

CHO cells were used to evaluate 
the application of this ruffle quanti-
fication protocol. Dramatic ruffles 
formed in PMA-treated cells, whereas 
few ruffles were visible in nontreated 
cells (Figure 2, A and B). An integrated 
macro for ImageJ was used for rapid 
implementation of the ruffle quantifi-
cation protocol. In this evaluation, the 
extracted ruffle images were classified 
both manually and automatically. The 
automated classification showed that 
ruffles accounted for 76.3% and non-
ruffles accounted for 23.7% of segre-
gated structures. This distribution is 
very close to that obtained by manual 
classification. The automated classifi-
cation was carried out using Equation 
2, and the probability cut-off value was 
set as 0.5. A structure was classified as 
ruffle when the probability was greater 
than 0.5 and was classified as non-
ruffle otherwise. Comparison of results 
obtained by the automated method with 
those obtained by the manual method 
showed that, overall, 92.8% of image 
structures were consistently classified 
as either ruffles or non-ruffles between 
the two methods. When expressed as 
mean ± standard error, the ruffle indices 
calculated from automated classifica-
tions (0.761 ± 0.205 and 3.62 ± 0.4 
for non-induced and PMA-induced 
cells, respectively) were very close to 
those from manual inspections (0.812 ± 
0.189 and 3.81 ± 0.402 for non-induced 
and PMA-induced cells, respectively) 
(Figure 2C). The difference in ruffle 
indices between non-induced and 
PMA-induced cells was statistically 
significant for both methods of classi-
fication. Hence, the quantitative results 
using automated classification reliably 
reflected the visible difference in ruffle 
formation between PMA-induced and 
non-induced cells.

Automated classification and quanti-
fication of platelet-derived growth 

factor (PDGF)-induced ruffling in NIH 
3T3 cells was also conducted using 
Equation 2 and the parameter values 
in Table 2. This yielded satisfactory 
results (see Supplementary Figure S1), 
but underestimated the level of ruffle 
formation. This resulted from differ-
ences in the morphology of ruffles in 
the two cell types and indicates that to 
apply Equation 2 to other cell types, 
which may have unique ruffle features, 
regression coefficients need to be 
generated from data sets obtained using 
that cell type.

We quantified ruffles in images 
acquired form dorsal sections of 
cells. This eliminated many F-actin-
containing structures, such as stress 
fibers and lamellipodia, which are 
found in the ventral sections of these 
cells. While it possible that non-ruffle 
structures will be detected using our 
method, the classification protocol, 
using parameters in Table 2, places 
restrictions on object shape that make 
this unlikely. We have confirmed this 
by analyzing F-actin-containing ruffles 
together with plasma membrane struc-
tures (using GFP-tagged membrane 
markers or anti-integrin antibodies, 
data not shown). Using our method, 
we were unable to detect ruffle-like 
structures that did not correspond with 
plasma membrane structures.

In summary, we report a method 
for the automated classification and 
quantification of F-actin-containing 
ruffles from fluorescence micrographs 
of cultured cells. This method is 
substantially less labor-intensive than 
manual classification and therefore 
allows rapid and accurate processing 
of images from large numbers of cells. 
In examining ruffle formation under 
several experimental conditions, we 
have found that this protocol provides a 
substantial (at least 10-fold) reduction 
in the time required to quantify data 
compared with manual methods. Given 
the speed with which data can be 
acquired using this protocol, it is well 
suited to the analysis of large amounts 
of image data obtained in time-courses 
during live cell experimentation. The 
ability to quantify ruffle formation 
over the entire dorsal surface of a cell 
makes this method suitable to the 
rapid and accurate assessment of the 
involvement of numerous cellular 

factors in ruffle formation. In this way, 
the method complements existing 
approaches that allow analysis of 
ruffling dynamics with high spatial and 
temporal resolution (22). Our method 
is also highly adaptable; the processing 
and classification techniques can be 
modified, for example by adjusting 
the σ values in the 2-D DoG filter to 
detect lines or structures with different 
size characteristics, by using other 
line detection methods, or by demar-
cating cellular boundaries along more 
directions (e.g., x, y, and diagonally). 
Overall, this method is a reliable, yet 
rapid, approach for the automated 
quantification of fluorescently stained 
ruffles and has the potential to be 
applied to the analysis of other fine 
cellular structures.
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