Special Issue Article

Revisiting the Power Pose Effect: How
Robust Are the Results Reported by
Carney, Cuddy, and Yap (2010) to Data

Analytic Decisions?

Marcus Credé' and Leigh A. Phillips'

Abstract

Social Psychological and

Personality Science

2017, Vol. 8(5) 493-499

© The Author(s) 2017

Reprints and permission:
sagepub.com/journalsPermissions.nav
DOIL: 10.1177/19485506177 14584
journals.sagepub.com/home/spp

®SAGE

The literature on the impact of expansive poses on biological and psychological variables is characterized by discrepant findings.
These discrepant findings may, in part, be a function of differences in how data were analyzed. In this article, we use multiverse
analysis to examine whether the findings reported in the original paper by Carney, Cuddy, and Yap are robust to plausible
alternative data analytic specifications: outlier identification strategy, the specification of the dependent variable, and the use of
control variables. Our findings indicate that the inferences regarding the presence and size of an effect on testosterone and
cortisol are highly sensitive to data analytic specifications. We encourage researchers to routinely explore the influence of data
analytic choices on statistical inferences and also encourage editors and reviewers to require explicit examinations of the influence
of alternative data analytic specifications on the inferences that are drawn from data.
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The claim of a positive impact of expansive body poses—often
referred to as power poses—rests to a nontrivial degree on the
widely cited and publicly well-known study described by
Carney, Cuddy, and Yap (2010). These authors reported that
participants who held a high-power pose experienced a signif-
icant increase in testosterone and a significant decrease in cor-
tisol relative to participants who held a contractive (i.e., low
power) pose. Carney et al. also reported that participants in the
high-power pose condition were significantly more likely to
engage in risky decision-making and that they felt significantly
more powerful and in charge than participants in the low-
power pose condition; two findings that they reported replicat-
ing in a second sample. This finding has been described in the
second most viewed Technology, Entertainment, Design
(TED) talk of all time (Cuddy, 2012) as well as in a best-selling
book (Cuddy, 2015).

The claim that power poses hold these benefits has attracted
substantial controversy in recent years because of failed
attempts to replicate the findings reported by Carney et al.
(2010; e.g., Garrison, Tang, & Schmeichel, 2016; Ranehill
et al., 2015). In response, proponents of the efficacy of power
poses have argued that situational and methodological modera-
tors may account for the inability of some researchers to repli-
cate the initial power pose findings (see Carney, Cuddy, & Yap,
2015). An alternative reason for this nonreplication that we
explore in this article is that the findings originally reported

by Carney et al. (2010) are the result of p-hacking (Simmons,
Nelson, & Simonsohn, 2011).

Broadly speaking, p-hacking refers to the fact that research-
ers have substantial decision latitude about how statistical anal-
yses are conducted and that the reported analytic approach is
simply the one that resulted in an effect size estimate or infer-
ential statistic that is most favorable for the research hypoth-
esis. For example, researchers may decide to add participants
until a desired level of statistical significance is reached for a
particular inferential statistic and/or to add or remove covari-
ates from an analysis in order to maximize the observed effect
size estimate or degree of statistical significance. Across differ-
ent types of statistical analyses, researchers are asked to make
many discrete decisions about how analyses are conducted, and
for many of these decisions there is no universally acknowl-
edged best practice. These arbitrary decisions include the man-
ner in which missing data are treated, the identification and
exclusion procedures for outliers, the decision to transform
variables and the use of specific transformation procedures, the
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scoring procedures for inventories, the screening of data using
attention-check indicators, the use and choice of covariates,
and the reliance on specific estimation procedures. Because
many of these decisions are independent of each other, the total
number of possible analysis permutations for any one analysis
can be very large.

Consider a simple case in which a researcher must decide
between two strategies for dealing with missing data, three stra-
tegies for handling outliers, two strategies for dealing with
careless responders, three potential control variables (A, B, and
C) that can be used in eight different possible combinations
(i.e., no controls, A, B, C, AB, AC, BC, and ABC), and two dif-
ferent statistical models. In this simple case, there are 192 (2 x
2 x 3 x 8 x 2) different ways of analyzing the data; a number
that can rise even further if the many other analytic decisions
that characterize many studies are also considered.

Simmons, Nelson, and Simonsohn (2011) note that journals’
preferences for statistically significant results and researchers’
self-serving bias are likely to result in researchers presenting
only the results from the most favorable constellation of data
analytic decisions. Furthermore, Gelman and Loken (2013)
argued that data analytic alternatives are problematic even
when researchers do not engage in post hoc exploration of dif-
ferent statistical decisions. That is, even in the case in which
researchers may have decided a priori upon a particular data
analytic approach (and even when this approach was preregis-
tered), the inference drawn about the existence and size of an
effect based on that particular approach represents only one
inference from the set of possible inferences that might be
arrived at using other plausible data analytic approaches. Of
course, inferences about psychological phenomena should ide-
ally be robust and insensitive to arbitrary data analytic
decisions.

The Current Study

In order to explore the degree to which the findings reported by
Carney et al. (2010) are sensitive to data analytic decisions, we
use the publicly posted data from the primary Carney et al.
study (see Fosse, 2016) and a recently developed approach to
understanding the robustness of inferences to data analytic
decisions. This approach, referred to as a “multiverse analysis”
(Steegen, Tuerlinchx, Gelman, & Vanpaemel, 2016), simply
provides a summary of the effect size estimates and associated
p values used in a null hypothesis testing approach across all
plausible combinations of data analytic decisions. We begin
by describing three data analytic decisions that needed to be
made when analyzing the data collected by Carney et al.
(2010).

Decision |I: Identification of Outliers

Carney et al. (2010) excluded 3 participants in a total of 42 par-
ticipants on the basis of a univariate outlier analysis. Specifi-
cally, participants whose cortisol or testosterone scores were
more than three standard deviations above or below the sample

mean were excluded. At least three alternative strategies are
also plausible. First, the authors could have decided to include
all observations because all hormone data were collected via
saliva samples and were therefore unlikely to be characterized
by response errors such as random responding. Second, the
authors could have identified univariate outliers for testoster-
one by first conditioning on gender, as is recommended by
some endocrinology researchers (e.g., Stanton, 2011), because
testosterone exhibits very large gender differences and is pro-
duced differently in men and women. That is, separate means
and standard deviations are computed for men and women, and
outliers are identified using these gender-specific means and
standard deviations. Third, the authors could have identified
testosterone and cortisol outliers using a multivariate criterion
such as Mahalanobis distances, a strategy that is sometimes
recommended for analysis of variance/analysis of covariance
(ANCOVA) over using univariate outlier analysis (e.g., Bur-
denski, 2000).

Decision 2: Choice of Dependent Variable

Carney et al. (2010) rely on an ANCOVA model, with the post-
manipulation hormone (testosterone or cortisol) level as the
dependent variable and the premanipulation hormone level as
a control variable. An alternative strategy—one followed by
the unsuccessful replication attempt by Ranehill et al.
(2015)—is to use the change in the hormone from premanipu-
lation to postmanipulation as the dependent variable. Impor-
tantly, these two analytic approaches can result in different
inferences (a phenomenon known as “Lord’s Paradox”; Lord,
1967) because the two approaches answer subtly different
questions. The first approach examines the effect of the power
pose on postmanipulation hormones that is not explained by
premanipulation hormones, while the second approach pro-
vides information on the influence of the power pose on the
change in hormone levels.

Decision 3: Use of Control Variables

For the analysis involving testosterone as the dependent vari-
able, the ANCOVA model relied on by Carney et al. (2010)
included gender, premanipulation testosterone, premanipula-
tion cortisol, and postmanipulation cortisol as control vari-
ables. Similarly, for the analysis involving cortisol as the
dependent variable, Carney et al. included gender, premanipu-
lation cortisol, premanipulation testosterone, and postmanipu-
lation testosterone as control variables. However, there are
multiple alternative configurations of control variables that are
also plausible—their precise configuration being partly deter-
mined by the choice of dependent variables. For example,
when the dependent variable is the postmanipulation hormone
level, the corresponding premanipulation hormone should
always be included as a covariate to maximize statistical power
and to avoid the confound of preexisting differences in the hor-
mone; however, whether to include or exclude premanipulation
and postmanipulation levels of the other hormone is more
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Table I. Multiverse Analysis for the Effect of Power Posing on Testosterone.

Outlier Identification: Entire

Outlier Identification: Test.
Conditioned on Gender

Qutlier Identification:
Multivariate or No Exclusion

Sample (N = 39) (N = 41) (N=42)

Gender Effect Control Variables DV: T2 Test. DV:Ain Test. DV: T2 Test. DV:Ain Test. DV:T2 Test. DV: A in Test.
Combined Gender 047 (p = .19) 019 (p =.39) .036 (p =.23)
Combined Gender and T1 test. .029 (p = .31) 042 (p = 21) .055 (p =.15)
Combined Gender and T cort. 045 (p = .21) 017 (p = 43) 018 (p = 42)
Combined Gender, Tl test,and TI  .037 (p = .26) .040 (p = .23) 043 (p = .21)

cort.
Combined TI cort. and T2 cort. .089 (p = .07) .038 (p = .23) .037 (p = .24)
Combined Gender, T1 test., Tl cort., .123 (p =.04) .099 (p = .06) .102 (p = .051)

and T2 cort.
Men only No controls 192 (p = .13) .047 (p = 44) .096 (p = .24)
Men only TI test. .000 (p = .96) 073 (p = .35) 101 (p = .25)
Men only TI cort. 184 (p =.17) A21 (p = .22) .063 (p = .37)
Men only TI test.and T1 cort. .026 (p = .64) .104 (p = .28) 083 (p = .32)
Men only TI cort. and T2 cort. 162 (p = .22) 141 (p = .21) .057 (p = 41)
Men only Tl test, Tl cort,and T2 .026 (p = .66) 125 (p = .26) .086 (p = .33)

cort.
Women only  No controls .005 (p =.73) .005 (p =.73) .005 (p =.73)
Women only  TI test. 019 (p = .51) 019 (p = .51) 019 (p = .51)
Women only Tl cort. .005 (p = .75) .005 (p =.75) .005 (p = .75)
Women only Tl test. and Tl cort. .023 (p = 48) .023 (p = 48) .023 (p = 48)
Women only Tl cort. and T2 cort. 077 (p = .19) 077 (p = .19) 077 (p = .19)
Women only T test, Tl cort,and T2 .167 (p =.053) .167 (b =.053) .167 (b =.053)

cort.

Note. Entries are partial )2 values and (in parentheses) the associated p value. The

entry in boldface is the effect for the analyses originally reported in the Carney,

Cuddy, and Yap (2010) paper. Blank entries mean that the analyses would not be recommended for reasons described in the text. The number of women was
constant across the three outlier strategies. DV = dependent variable; Test. = testosterone; cort. = cortisol; T 1= premanipulation; T2 = postmanipulation.

ambiguous. Similarly, when the dependent variable is the
change in hormone levels from premanipulation to postmani-
pulation, the premanipulation level of that hormone should not
be included as a covariate. The reason for this is that controlling
for one part of a change scores reduces the dependent variable
simply to the other part of the change scores (Edwards, 2001).
Finally, gender should be included as a covariate in this study,
unless separate effect size estimates are computed for men and
women—a strategy that is recommended for testosterone data
by Stanton (2011) in his critique of the data analytic approach
taken by Carney et al. (2010). Stanton argues for the separate
computation of effects for men and women because the biolo-
gical generating mechanism for testosterone is different for
men and women and because women are well-known to have
a different hormonal response than men in dominance situa-
tions (e.g., power posing).

The analyses described by Carney et al. (2010) involved
other discrete decisions—such as the question of whether gen-
der by treatment interactions should be examined (see Stanton,
2011, for a discussion); for the sake of simplicity, we limit our
discussion and the multiverse analysis to the three aforemen-
tioned analytic decisions. Together, the three analytic decisions
result in 36 potential data analytic configurations. The raw data
for the findings described by Carney et al. have recently been
made public (Fosse, 2016), thereby allowing an examination

of how the effect size estimate for the power pose manipulation
is dependent on the precise configuration of analytic decisions.

Results

For the sake of simplicity, we present two statistics for our mul-
tiverse analyses: (1) partial N as an estimate of the power pose
treatment effect size, and (2) the associated p values that
researchers using a null hypothesis testing framework would
rely on to arrive at inferences. We interpret the effect sizes
using the standards for n* proposed by Miles and Shevlin
(2001): .01 is small, .06 is medium, and .14 is large.

Outlier Analysis

Carney et al. (2010) reported excluding three participants from
the analyses because at least one of their hormone levels was
more than three standard deviations above the sample mean.
When separate means and standard deviations on testosterone
are calculated for men and women, as recommended by Stan-
ton (2011), only one univariate outlier is present in the data.
An examination of Mahalanobis distances indicate no evidence
for multivariate outliers (at oo = .001) across the four hormone
measurements, when data for men and women are examined
separately. For this specific sample, the four possible ways of
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Table 2. Multiverse Analysis for the Effect of Power Posing on Cortisol.

Outlier Identification: Entire

Outlier Identification: Test.
Conditioned on Gender

Qutlier Identification:
Multivariate or Conditioned

Sample (N = 39) (N =41) on Gender (N = 42)

Gender Effect Control Variables DV: T2 Cort. DV:AinCort. DV: T2 Cort. DV:AinCort. DV:T2 Cort. DV:Ain Cort.
Combined Gender 004 (p =.71) 013 (p = 47) .002 (p =.79)
Combined Gender and T1 cort. .08 (p =.09) .079 (p = .08) 061 (p =.12)
Combined Gender and T1 test. .007 (p = .63) .007 (p = .62) .003 (p =.75)
Combined Gender, T1 test,, and T| 073 (p=.11) .087 (p = .07) .078 (p = .09)

cort.
Combined TI test. and T2 test. 01l (p = .54) 022 (p = .37) .000 (p = .90)
Combined Gender, Tl cort., Tl test, .155(p =.02) 129 (p = .03) A35 (p =.02)

and T2 test.
Men only No controls 014 (p =.70) 061 (p =.37) 019 (p = .61)
Men only Tl cort. .044 (p = .51) 103 (p = .26) 019 (p = .62)
Men only TI test. 0I5 =.71) 124 (p = .21) .008 (p = .76)
Men only Tl cort. and T1 test. .000 (p = .98) 101 (p = .29) .027 (p = .58)
Men only TI test. and T2 test. 015 (p =.72) 178 (p = .15) .000 (p = .98)
Men only T cort., Tl test, and T2 .000 (p = .97) 122 (p = .27) A1 (p = .04)

test.
Women only No controls .003 (p =.79) 003 (p =.79) .003 (p =.79)
Women only TI cort. 094 (p =.14) 094 (p = .14) 094 (p = .14)
Women only TI test. .000 (p = .95) .000 (p = .95) .000 (p = .95)
Women only Tl cort.and T1 test. 108 (p = .12) 108 (p = .12) 108 (p = .12)
Women only TI test. and T2 test. .001 (p = .90) .001 (p = .90) .001 (p = .90)
Women only TI cort., Tl test.,, and T2 239 (p = .02) 239 (p = .02) 239 (p = .02)

test.

Note. Entries are partial 11> values and (in parentheses) the associated p value. The entry in boldface is the effect for the analyses originally reported in the Carney,
Cuddy, and Yap (2010) paper. Blank entries mean that the analyses would not be recommended for reasons described in the text. The number of women was
constant across the three outlier strategies. DV = dependent variable; Test. = testosterone; cort. = cortisol; T 1= premanipulation; T2 = postmanipulation.

identifying outliers that we discussed earlier therefore only
result in three different sample sizes. We therefore present our
multiverse analyses in a way that includes only discrete speci-
fications for the outlier analysis: one excluding the outliers as
in Carney et al. (2010), resulting in a sample size of 39, one that
identifies outliers based on gender-conditioned testosterone
values resulting in a sample size of 41, and one that does not
exclude any participants (i.e., N = 42).

Multiverse Analysis for Testosterone

The multiverse analysis for testosterone (Table 1) provides 54
different estimates of the effect of the power pose treatment on
testosterone, although 16 of these are redundant with other
analyses due to invariant sample sizes for women across the
three outlier identification specifications. Each of these esti-
mates is the result of an ANCOVA (with high-power, low-
power pose manipulation as the independent variable) with dif-
ferent combinations of the following analysis decisions: (1)
determining gender-specific/nonspecific outliers on single or
total variables (i.e., all analyses had 39, 41, or 42 participants
depending on identification of outliers), (2) defining the depen-
dent variable as T2 hormone level or as change in hormone
level from T1 to T2, (3) choosing control variables, and (4)
handling gender (i.e., gender separate or combined analysis).

In aggregate, our analyses indicate very substantial variability
in the partial n2 effect size estimate for the power pose manip-
ulation. Indeed, partial n? estimates range from 0 to a large
effect of .192, and substantial variability in effect size estimates
is evident across all three specification levels. That is, the
choice of outlier analysis, the choice of dependent variable, and
the choice of control variables all exhibited substantial influ-
ences on effect size estimates. Particularly, low effect size esti-
mates are evident for most of the analyses involving only
female participants. Similar variability is also evident in the
p values associated with the effect sizes, such that researchers
relying on a null hypothesis significance testing framework
would make very different inferences about both the size and
presence of a power posing effect on testosterone. It is also note-
worthy that all alternative effect size estimates for the total sam-
ple (N = 42) are smaller than the effect size reported for
testosterone by Carney et al. (2010). In many instances, the alter-
native estimates were substantially smaller. That is, the multi-
verse analysis shows that the reported effect size is not robust
to data analytic decisions.

Multiverse Analysis for Cortisol

The multiverse analysis for cortisol (Table 2) also provides 54
estimates (38 unique) of the effect of the power pose treatment
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on cortisol. As in the analysis of testosterone, each of these esti-
mates represents a different way of (1) identifying outliers, (2)
defining the dependent variable, (3) combination of control
variables, and (4) method of controlling for gender effects. In
aggregate, this analysis indicates similarly high levels of varia-
bility as the testosterone analyses in both the effect size esti-
mates and the associated p values. Partial n° estimates
ranged from O to a large effect of .239.

As was the case for testosterone, all alternative effect size
estimates for the total sample (N = 42) are smaller than the
effect size reported for cortisol by Carney et al. (2010), and
in many instances, the alternative estimates were substantially
smaller.

Follow-Up Analysis

Although all of the examined analytic decisions influenced the
inferences made about the effect of power posing, perhaps the
largest influence was evident in the separate analyses for men
and women. In general, the estimates of the effect of the power
pose manipulation on testosterone was very strong for men and
near zero for women, while the effect on cortisol was relatively
strong for women and much weaker for men. In order to exam-
ine whether this gender effect was also evident for the beha-
vioral and perceptual dependent variables examined by
Carney et al. (2010), we reanalyzed this aspect of the data made
available by Fosse (2016). In addition to the effects on hor-
mones that we have already discussed, Carney et al. reported
that participants in the high-power pose condition were signif-
icantly more likely to engage in risky decision-making and that
they felt significantly more powerful and in charge than parti-
cipants in the low-power pose condition; two findings that they
reported replicating in a second sample.

However, a reanalysis of both data sets' shows that the
effect of the power pose manipulation on risk-taking was
indeed much stronger for men in both samples, y*(1, n = 16)
=4.75, p = .029, r = .54 in Sample 1 and ¥*(1, n = 20) =
6.11, p = .013, r =.55 in Sample 2, than for women, xz(l,
n=26)=0.72, r = —.17 in Sample 1 and ¥*(1, n = 29) =
0.68, p > .25, r = .15 in Sample 2. A comparison of these
effects using Cochran’s test supported a significant difference,
x*(1, N = 42) = 3.64, p = .056 in Sample 1) and ¥*(1, N = 49)
=4.84, p = .03 in Sample 2. The gender moderating effect was
also evident for feelings of being in power and in charge: men
in the high-power pose condition felt more powerful and in
charge than men in the low-power pose condition, #(14) =
3.86, p = .002, Cohen’s d = 1.95 for Sample 1 and #(18) =
1.78, p = .09, Cohen’s d = .80 for Sample 2, while the same
effect for women was much weaker, #(24) = 1.16, p > .25,
Cohen’s d = .45 for Sample 1 and #(27) = 1.21, p = .24,
Cohen’s d = .19 for Sample 2.

Further, a reanalysis of the data from Ranehill et al.
(2015)—who failed to replicate most of the power pose effects
reported by Carney et al. (2010)—shows a similar pattern for
feelings of power and confidence; effects were much higher for
men, #(79) = 3.41, p = .001, Cohen’s d = .76, than for women,

#(78) = .76, p > .25, Cohen’s d = .17. A meta-analysis of the
effects across the three studies shows that the effect for men
(k=3, N=117, Cohen’s d = .87) was significantly stronger
(Z =2.45, p = .01) than the effect for women (k =3, N =
135, Cohen’s d = .22). This evidence for the moderating role
of gender is particularly noteworthy because power poses have
often been emphasized as being effective for women (Cuddy,
2012, 2013). For example, in a discussion of how power posing
can help women “lean in” business settings Cuddy (2013)
argued that

....standing in a bathroom stall like Wonder Woman before a
stressful meeting—has the potential to substantially improve
women’s ability to lean in—to take risks, face fears and barriers,
and to endure the stressors inherent to the kinds of changes Sand-
berg recommends.

Discussion

Our paper makes two broad contributions to the literature. First,
we have illustrated that the original findings regarding the ben-
efits of expansive, “power poses” are highly sensitive to the
specific configuration of plausible data analytic choices made
by the researchers and that those reported by Carney et al.
(2010) and discussed in Cuddy (2012) were the strongest
effects of all possible effects, a majority of which were small
effects or near-zero effects, and strongly moderated by gender.
As such, our findings should help to clarify the apparent discre-
pancies between the original findings and subsequent unsuc-
cessful efforts to replicate these findings. That is, our results
suggest that the data described by Carney et al. (2010), like the
data from various unsuccessful replication attempts, are not
supportive of a robust effect for power poses. It should, of
course, also be noted that some of the authors who reported a
failure to replicate the power pose effect also only presented
findings for one particular configuration of data analytic
choices and that these configurations did not necessarily match
those used by Carney et al. For example, Ranehill et al. (2015)
did not exclude outliers, did not include the covariates used by
Carney et al., and used changes in hormone levels as the depen-
dent variable rather than postmanipulation hormone levels con-
trolling for premanipulation hormones. As such, it is possible
that some of the failed replication attempts selectively pre-
sented results for the least favorable combination of data ana-
lytic choices. However, our own reanalysis of the data
reported by Ranehill et al. (reported in Online Supplemental
Material) suggests that the failure to replicate the power pose
in that data is robust to the types of data analytic choices
described in this article.

Our second contribution is broader in nature and relates to
the manner in which we hope researchers will explore their data
and present their findings. First, we hope that researchers will
become better aware of how data analytic choices can drama-
tically influence the inferences they draw from their findings.
Popper (1963) and others, such as Feynman (1974) and
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Greenwald, Pratkanis, Leippe, and Baumgardner (1986),
encourage us to not only report but to seek out disconfirming
evidence in order to advance our field as rapidly as possible.
Examining the role of analytic choices on our statistical infer-
ences represents one way of seeking out and presenting such
potentially disconfirming evidence. As such, our findings may
encourage greater caution in how findings are interpreted, how
they are integrated into our current understanding, and how
they are used as the building blocks for future research. Of
course, this requires a greater willingness on the part of journals
to publish results that are not entirely robust to all analytic
approaches. Second, we hope that journals will allow research-
ers to report multiverse analyses in order to illustrate to readers
how robust or sensitive findings are to data analytic strategy.
Explicitly modeling the effect of data analytic choices should
ameliorate reader’s concerns about possible p-hacking and
thereby increase the faith that readers have in reported findings.
This is likely to be particularly important at a time when we are
becoming increasingly aware of the damaging effect that ques-
tionable research practices such as p-hacking and hypothesiz-
ing after results known (Bosco, Aguinis, Field, Pierce, &
Dalton, 2015; Kerr, 1998) and the metamorphosis of reported
findings between dissertation and journal versions of the same
data (the Chrysalis effect; O’Boyle, Banks, & Gonzalez-Mule,
2014) have on the credibility of our discipline (see also John,
Loewenstein, & Prelec, 2012). To this end, we would also
encourage reviewers and editors not only to request multiverse
analyses from authors but to also think about plausible alterna-
tive analytic strategies that the authors may not have consid-
ered. Lastly, we hope that systematic efforts to model the
effect of analytic choices may, at times, also yield meaningful
theoretical insights, as we attempted to illustrate with our
example on the moderating role of gender on the impact of
power posing interventions on psychological variables such
as risk-taking behaviors and feelings of being powerful and “in
charge.”
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