The information published in this Graduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2019-2020 academic year, including the Summer Semester 2019, Fall Semester 2019 and the Winter Semester 2020.

For your convenience the Graduate Calendar is available in PDF format.

If you wish to link to the Graduate Calendar please refer to the Linking Guidelines.

The University is a full member of:
- Universities of Canada

Contact Information:

University of Guelph
Guelph, Ontario, Canada
N1G 2W1
519-824-4120

Revision Information:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1, 2019</td>
<td>Initial Publication</td>
</tr>
<tr>
<td>June 28, 2019</td>
<td>Revision 1</td>
</tr>
</tbody>
</table>
Disclaimer
The Office of Graduate and Postdoctoral Studies has attempted to ensure the accuracy of this on-line Graduate Calendar. However, the publication of information in this document does not bind the university to the provision of courses, programs, schedules of studies, fees, or facilities as listed herein.

Limitations
The University of Guelph reserves the right to change without notice any information contained in this calendar, including any rule or regulation pertaining to the standards for admission to, the requirements for the continuation of study in, and the requirements for the granting of degrees or diplomas in any or all of its programs.

The university will not be liable for any interruption in, or cancellation of, any academic activities as set forth in this calendar and related information where such interruption is caused by fire, strike, lock-out, inability to procure materials or trades, restrictive laws or governmental regulations, actions taken by the faculty, staff or students of the university or by others, civil unrest or disobedience, Public Health Emergencies, or any other cause of any kind beyond the reasonable control of the university.

The University of Guelph reaffirms section 1 of the Ontario Human Rights Code, 1981, which prohibits discrimination on the grounds of race, ancestry, place of origin, colour, ethnic origin, citizenship, creed, sex, sexual orientation, handicap, age, marital status or family status.

The university encourages applications from women, aboriginal peoples, visible minorities, persons with disabilities, and members of other under-represented groups.
Introduction

Collection, Use and Disclosure of Personal Information

Personal information is collected under the authority of the University of Guelph Act (1964), and in accordance with Ontario’s Freedom of Information and Protection of Privacy Act (FIPPA) [http://www.e-laws.gov.on.ca/DLB_Laws/Statutes/English/90f31_e.htm]. This information is used by University officials in order to carry out their authorized academic and administrative responsibilities and also to establish a relationship for alumni and development purposes. Certain personal information is disclosed to external agencies, including the Ontario Universities Application Centre, the Ministry of Advanced Education and Skills Development, and Statistics Canada, for statistical and planning purposes, and is disclosed to other individuals or organizations in accordance with the Office of Registrarial Services Departmental Policy on the Release of Student Information. For details on the use and disclosure of this information call the Office of Registrarial Services at the University at (519) 824-4120 or see [https://www.uoguelph.ca/registrar].

Statistics Canada - Notification of Disclosure

For further information, please see Statistics Canada's web site at [http://www.statcan.gc.ca] and Section XIV Statistics Canada.

Address for University Communication

Depending on the nature and timing of the communication, the University may use one of these addresses to communicate with students. Students are, therefore, responsible for checking all of the following on a regular basis:

Email Address

The University issued email address is considered an official means of communication with the student and will be used for correspondence from the University. Students are responsible for monitoring their University-issued email account regularly.

Home Address

Students are responsible for maintaining a current mailing address with the University. Address changes can be made, in writing, through Registrarial Services.

Name Changes

The University of Guelph is committed to the integrity of its student records, therefore, each student is required to provide either on application for admission or on personal data forms required for registration, their complete, legal name. Any requests to change a name, by means of alteration, deletion, substitution or addition, must be accompanied by appropriate supporting documentation.

Student Confidentiality and Release of Student Information Policy Excerpt

The University undertakes to protect the privacy of each student and the confidentiality of their record. To this end the University shall refuse to disclose personal information to any person other than the individual to whom the information relates where disclosure would constitute an unjustified invasion of the personal privacy of that person or of any other individual. All members of the University community must respect the confidential nature of the student information which they acquire in the course of their work.

Complete policy at [https://www.uoguelph.ca/secretariat/office-services/university-secretariat/university-policies].
Graduate Degree Learning Outcomes

On May 27, 2013, the University of Guelph Senate approved the following five University-wide Learning Outcomes as the basis from which to guide the development of graduate degree programs, specializations and courses:

1. Critical and Creative Thinking
2. Literacy
3. Global Understanding
4. Communication
5. Professional and Ethical Behaviour

These learning outcomes are also intended to serve as a framework through which our educational expectations are clear to students and the broader public; and to inform the process of outcomes assessment through the quality assurance process (regular reviews) of programs and departments.

An on-line guide to the learning outcomes, links to the associated skills, and detailed rubrics designed to support the development and assessment of additional program and discipline-specific outcomes, are available for reference on the Learning Outcomes website.

Critical and Creative Thinking

Critical and creative thinking is a concept in which one applies logical principles, after much inquiry and analysis, to solve problems with a high degree of innovation, divergent thinking and risk taking. Those mastering this outcome show evidence of integrating knowledge and applying this knowledge across disciplinary boundaries. Depth and breadth of understanding of disciplines is essential to this outcome. At the graduate level, originality in the application of knowledge (master’s) and undertaking of research (doctoral) is expected.

In addition, Critical and Creative Thinking includes, but is not limited to, the following outcomes: Independent Inquiry and Analysis; Problem Solving; Creativity; and Depth and Breadth of Understanding.

Literacy

Literacy is the ability to extract information from a variety of resources, assess the quality and validity of the material, and use it to discover new knowledge. The comfort in using quantitative literacy also exists in this definition, as does using technology effectively and developing visual literacy.

In addition, Literacy includes, but is not limited to, the following outcomes: Information Literacy, Quantitative Literacy, Technological Literacy, and Visual Literacy.

Global Understanding

Global understanding encompasses the knowledge of cultural similarities and differences, the context (historical, geographical, political and environmental) from which these arise, and how they are manifest in modern society. Global understanding is exercised as civic engagement, intercultural competence and the ability to understand an academic discipline outside of the domestic context.

In addition, Global Understanding includes, but is not limited to, the following outcomes: Global Understanding, Sense of Historical Development, Civic Knowledge and Engagement, and Intercultural Competence.

Communication

Communication is the ability to interact effectively with a variety of individuals and groups, and convey information successfully in a variety of formats including oral and written communication. Communication also comprises attentiveness and listening, as well as reading comprehension. It includes the ability to communicate and synthesize information, arguments, and analyses accurately and reliably.

In addition, Communication includes, but is not limited to, the following outcomes: Oral Communication, Written Communication, Reading Comprehension, and Integrative Communication.

Professional and Ethical Behaviour

Professional and ethical behaviour requires the ability to accomplish the tasks at hand with proficient skills in teamwork and leadership, while remembering ethical reasoning behind all decisions. The ability for organizational and time management skills is essential in bringing together all aspects of managing self and others. Academic integrity is central to mastery in this outcome. At the graduate level, intellectual independence is needed for professional and academic development and engagement.

In addition, Professional and Ethical Behaviour includes, but is not limited to, the following outcomes: Teamwork, Ethical Reasoning, Leadership, Personal Organization and Time Management, and Intellectual Independence.
Table of Contents

| Engineering | .. 74 |
| Administrative Staff .. 74 |
| Graduate Faculty ... 74 |
| Associated Graduate Faculty 75 |
| MASc Program ... 75 |
| MEng Program .. 75 |
| PhD Program .. 76 |
| Graduate Diplomas in Water Resources 76 |
| Interdepartmental Programs 77 |
| Collaborative Specializations 77 |
| Courses .. 77 |
Engineering

The graduate degree programs offered in the School of Engineering include a course-work MEng and research thesis programs at the MASc and PhD levels. All programs are offered as full- or part-time studies. These programs provide for specialization in six fields of study: 1) Biological Engineering 2) Computer Engineering 3) Environmental Engineering 4) Engineering Systems and Computing 5) Mechanical Engineering 6) Water Resources Engineering. In addition, the School of Engineering offers two graduate diploma programs: Modelling Applications in Water Resources Engineering and Engineering Design of Sustainable Water Resource Systems.

• Biological Engineering is broadly categorized as bio-process, food, biomedical or biomechanical engineering. Research is conducted in many areas such as: physical, chemical and thermal processing of food, biomaterials or waste; physical properties of biological materials; process control; remote sensing; medical imaging; bioinstrumentation design and the development of medical diagnostics; ergonomic and prosthetic biomechanics; design of implants and surgical tools for human and veterinary applications.

• Computer Engineering is about the design and implementation of computer devices and systems. Driven by the ubiquity of integrated computing systems, Computer Engineering has expanded from a discipline with a few core areas, mainly focused on the design of microchips, to a broad field with widespread ramifications. It involves mapping computing ideas into physical implements and software components. Some active research areas include: integrated circuits and microprocessors, digital systems design and computer architecture, high-performance and configurable computing, telecommunication and cloud-computing networks, operating systems and software engineering.

• Environmental Engineering involves methods to prevent or mitigate damage to the environment by the reduction, treatment, or reclamation of solid, liquid, or gaseous by-products of industrial, agricultural and municipal activities. Emphasis is on the behaviour and fate of contaminants in the environment. Recent research topics include the following: composting of organic solids; control and remediation of chemical spills; wastewater treatment; soil/site remediation technology; policy innovations; air pollution and meteorology; vapour exchange and supercritical fluid extraction; air-surface pollutant exchange measurement; bio-filtration and membrane technologies; modelling of environmental processes.

• Engineering Systems and Computing involves development of digital or microelectronic devices, computer or robotic technologies and their application to manufacturing, computing, mechatronic or embedded systems. Some active research areas include: soft computing and neural networks; autonomous robots; intelligent control systems; micro-electromechanical (MEMS) devices; embedded systems and special purpose computing; VLSI circuit design and layout; analog integrated circuits and system-on-chip design; integrated sensor systems and networks; digital devices and signal processing; wireless and optical communication systems; cryptographic systems.

• Mechanical Engineering combines individual depth of experience and competence in a particular chosen major specialty with a strong background in the basic and engineering sciences. It strives to develop professional independence, creativity, leadership, and the capacity for continuing professional and intellectual growth. To help support the objectives of graduate degree programs at Guelph, an interdisciplinary learning environment is provided. Research areas that are pertinent and in line with Guelph’s vision include: sustainable energy, sustainable mobility, sustainable design, life-cycle design and assessment, systems modernization, materials and manufacturing, thermo-fluids, solid mechanics, remanufacturing, intelligent control system, closed-loop supply chain management, product life assessment and engineering management.

• Water Resources Engineering involves investigation, analysis and design of systems for control and utilization of land and water resources as part of the management of urban and rural watersheds. Research areas include: water quality control and safety; resource use and groundwater quality; hydrologic modelling; design and planning of urban water and sewage infrastructure; rural waste treatment systems; erosion control; non-point source pollution and mitigation; Geographic Information Systems (GIS); sediment and contaminant transport; irrigation and drainage modelling.

Administrative Staff

Interim Director
John Runciman (Thornbrough 2408, Ext. 52430)
sceer@uoguelph.ca

Associate Director, Undergraduate Studies
Andrea Bradford (Thornbrough 1342, Ext. 52485)
abradfor@uoguelph.ca

Associate Director, Graduate Studies
Bahram Gharabaghi (Thornbrough 1407, Ext. 52404)
sceadgr@uoguelph.ca

Graduate Program Assistant - MEng.
Lauren Fyke (Thornbrough 1407, Ext. 52404)
sceergad@uoguelph.ca
Baccalaureate degree in engineering or equivalent. Applicant must be a graduate from Biological/Food/Bioprocess Engineering

Process Engineering

Programming

Bioinstrumentation Design

Circuit Analysis

Engineering Unit Operations

Bioreactor Design

Heat and Mass Transfer

Digital Process Control Design

July 30, 2019

BEng, MASc Ryerson, PhD Toronto, P.Eng - Assistant Professor

April Khademi

Gordon Hayward

John Cherry

BSc, MSc Cairo, PhD McMaster - Assistant Professor, Engineering, University of Ontario Institute of Technology

Syeda Tasnim

MASc, PhD Waterloo - Assistant Professor

Hugh Whitely

BSc Queens, MSc Minnesota, PhD Guelph - Retired Faculty

MASc Program

The MASc program is intended to provide advanced training in engineering sciences, analysis, design, and research methodology. This objective is achieved through a combination of course work, applied research, and thesis writing. Upon graduation students will be able to analyse and research an engineering problem and apply their acquired skills and knowledge in a practical solution. A final examination is conducted following a public seminar presentation of the student's thesis.

Admission Requirements

In addition to the general admission standards of the university, the school has adopted additional admissions criteria for MASc studies. Applicants must meet one of the following requirements:

- Baccalaureate degree in engineering or equivalent. Applicant must be a graduate from an honours engineering program with at least a 75% average in the past four full-time semesters or the equivalent. International degree and grade equivalents will be determined by the Office of Graduate and Postdoctoral Studies.
- Bachelor of Science degree or equivalent. At least a "B" or 75% average in the last of four full-time semesters or the last two complete undergraduate years of an honours science degree. Applicants must demonstrate acceptable analytical ability by having taken a sufficient number of courses in mathematics and the physical sciences (chemistry and physics). Applicants lacking background in specific topics related to their research project must be prepared to complete make-up undergraduate engineering courses without receiving graduate credit.

Program Requirements

The prescribed program of study must consist of no fewer than 2 credits, of which at least 1.5 credits must be at the graduate level, and at least 1.0 must be engineering graduate courses. In all cases the remaining courses must be acceptable for undergraduate credit; that is, they must be either graduate courses or senior undergraduate courses. Depending on the student's background, the advisory committee may specify more than four courses, including undergraduate make-up courses. If make-up courses are deemed necessary, they will be considered additional courses.

MEng Program

The objective of the course-work master's degree program (MEng) is to provide an opportunity for engineering graduates, usually practising engineers, to advance their understanding of engineering principles and increase their grasp of the application of these principles to the solution of complex, practical problems. Many of these students are returning to school in order to learn about recent technological developments that have occurred since graduation in their field. The objective is achieved through selecting from a number of core and elective courses and completing a major project. The project requires a final written report that is presented in a public seminar followed by an oral examination of the candidate.

Admission Requirements

Applicants must be graduates of an honours engineering program with at least a 70% average in the past four full semesters or the last two complete undergraduate years or the equivalent. International degree and grade equivalents will be determined by the Office of Graduate and Postdoctoral Studies. Applicants must demonstrate acceptable analytical ability by having taken a sufficient number of courses in mathematics, and the physical sciences.

Biological Engineering applicants must have a minimum of three of the following courses or equivalents:

- Biological/Food/Bioprocess Engineering
- Engineering Unit Operations
- Bioreactor Design
- Bioinstrumentation Design
- Food Process Engineering Design
- Digital Process Control Design
- Heat and Mass Transfer
- Process Engineering

Computer Engineering applicants must have a minimum of three of the following courses or equivalents:

- Circuit Analysis
- Programming
Environmental Engineering applicants must have a minimum of three of the following courses or equivalents:

- Introduction to Environmental Engineering
- Engineering Unit Operations
- Water Quality
- Air Quality
- Solid Waste Management
- Water and Wastewater Treatment

Water Resources Engineering applicants must have a minimum of three of the following courses or equivalent:

- Fluid Mechanics
- Water Management
- Hydrology
- Water Quality
- Urban Water Systems
- Watershed Structures
- Soil and Water Conservation

Engineering Systems and Computing applicants must have a minimum of three of the following courses or equivalents:

- Electric Circuits
- Digital Systems
- Systems and Control Theory
- Programming
- Electronics
- Robotics

Mechanical Engineering applicants must have a minimum of three of the following courses or equivalents:

- Thermo-fluids
- Heat Transfer
- Solid mechanics
- Material science
- Dynamic System and controls
- Manufacturing processes
- Electrical circuits
- Machine Design
- Quality control
- Intelligent manufacturing

Applicant qualifications may be assessed via an entrance interview/oral examination conducted by the proposed advisor and one member of the School of Engineering Graduate Program Committee. Students deficient in certain areas will be required to take make-up undergraduate courses. Such students will be admitted and allowed to continue on provisional status for a maximum of two semesters or until the requirements are completed. These courses will not count toward the student's graduate credit requirements.

Program Requirements

All incoming MEng students will be enrolled in the “Coursework” study option by default. If students wish to complete their degree via “Coursework and MRP,” they are encouraged to contact potential advisors within their first semester of study.

COURSEWORK

Students must complete 4.5 credits according to the following:

1. 9 courses;
2. No more than 1.0 credits from senior undergraduate engineering courses;
3. No more than 1.0 credits from outside engineering; and
4. A minimum of 3.5 credits from engineering.

At least 2.5 credits of coursework must be field-specific (see the MEng section of the School of Engineering website for lists of courses). Remaining credits should be chosen in consultation with the Associate Director, Graduate Studies.

COURSEWORK AND MAJOR RESEARCH PROJECT (MRP)

Students must complete 4.5 credits according to the following:

1. 7 courses and the Final Project Course (1.0);
2. No more than 1.0 credits from senior undergraduate engineering courses;
3. No more than 1.0 credits from outside engineering; and
4. A minimum of 3.5 credits from engineering (including the Final Project Course).

At least 2.5 credits of coursework must be field-specific (see the MEng section of the School of Engineering website for lists of courses). Remaining credits should be chosen in consultation with the student’s advisor. For the final project course, one member of the graduate faculty will be nominated through discussion between the student and potential advisor(s) and approved by the Associate Director, Graduate Studies as the advisor.

PhD Program

The PhD program prepares candidates for a career in engineering teaching, research, or consulting. The program is designed to provide both broad knowledge of engineering science and training in advanced research. Doctoral research carries the expectation of making an original contribution to the body of existing knowledge or technology. It is also expected that the responsibility of problem definition and solution is that of the student, and that the student's advisor acts truly in an advisory capacity. Therefore, graduates are expected to have acquired autonomy in defining and analysing problems, conducting research, and preparing scholarly publications. These objectives are achieved through a combination of course work, independent research, a qualifying examination, and the production and defence of a research dissertation.

Admission Requirements

The minimum academic requirement for admission to the PhD program is normally a recognized Master's degree in engineering. Applicants are usually required to have completed a Bachelor’s and a Master’s degree from a recognized post-secondary institution and must have achieved a minimum B average in their Master’s program. Applicants must also have demonstrated strong potential for research. A strong recommendation from the MAsc advisor is necessary. Direct admission to the PhD program from a Bachelor’s program is rarely granted. Applicants requesting direct admission must hold a bachelor's degree with exceptionally high academic standing and have related research experience. Such applicants should discuss this option with the Associate Director, Graduate Studies at the earliest opportunity.

Program Requirements

The prescribed program of study must consist of no fewer than 2.0 credits in addition to those taken as part of the MAsc degree. At least 1.0 of the credits must be at the graduate level, and at least 1.0 must be engineering graduate courses. Under special circumstances and with the approval of the Director, the school may reduce the requirement for 1.5 credit course requirement; however the 1.0 graduate-engineering-course credit requirement will not be changed. In all cases the remaining courses must be acceptable for graduate credit; that is, they must be either graduate courses or senior undergraduate courses. Depending on the student's background, the advisory committee may specify more than four courses, including undergraduate make-up courses. If make-up courses are deemed necessary, they will be considered additional courses.

The qualifying examination as outlined in the Graduate Calendar is held by the end of the fourth semester but no later than the fifth semester after the student has completed the required courses.

Graduate Diplomas in Water Resources

The objective of the graduate diploma is to provide mid-career, engineering professionals from Canada and abroad with post graduate education and training to improve their job-related expertise within an 8 month period. The program enhances the ability of these professionals to gain employment in the field of Water Resources engineering by developing specialized knowledge in one of two areas of Water Resources. The first area will emphasize higher learning in the application of Modelling in a Water Resources context. Application of existing tools, particularly GIS, to a variety of contemporary water resources problems will be emphasized. The second area focuses on the Design of Sustainable Water Resources Systems that will be sustainable in today’s development environment.

Admission Requirements

Students with an Honours degree will be considered for the Graduate Diploma program provided they have satisfactory preparation in mathematical and physical sciences. A minimum average grade of 70% for the last four full-time semesters, or the last two complete undergraduate years, prior to entry will normally be required.

Since an adequate background in undergraduate engineering courses is prerequisite for courses offered in the program, there is a requirement of the following courses or equivalent.

ENGG*2230 Fluid Mechanics
ENGG*3650 Hydrology
ENGG*3340 Geographic Information Systems

The qualification will be assessed by transcripts supplied by the student at the time of application. Students deficient in certain areas will be required to take make-up undergraduate courses as decided by the Graduate Program Committee. The student will be admitted on probation until the requirements have been completed. These courses will not count toward the student graduate degree requirement.

1Only required for students in the Modelling Applications in Water Resources Systems

Program Requirements

The prescribed program consists of 2.0 credits acceptable at the graduate level.
Modelling Applications in Water Resource Engineering

The core courses consist of a total of 2.0 credits. 1.5 credits must come from the list below.

One of these must be ENGG*6800.

ENGG*6800 [0.50] Deterministic Hydrological Modelling
ENGG*6740 [0.50] Ground Water Modelling
ENGG*6840 [0.50] Open Channel Hydraulics
ENGG*6880 [0.50] Soil Erosion and Fluvial Sedimentation
ENGG*6030 [0.50] Finite Difference Methods
ENGG*6050 [0.50] Finite Element Methods
ENGG*4510 [0.50] Risk Assessment and Management
ENGG*6060 [0.50] Engineering Systems Modelling and Simulation

In addition, the student must complete ENGG*6910. This is a 0.5 credit, 1 semester course. This special topics course will focus on one of the following areas:

Watershed Systems Design
Soil-Water Conservation Systems Design
Urban Water Systems Design

And include a project utilizing a GIS-based modeling approach.

Engineering Design of Sustainable Water Resource Systems

The courses consist of a total of 2.0 credits. Two courses (1.0 credits) must be selected from the following courses:

ENGG*6610 [0.50] Urban Stormwater Management
ENGG*6860 [0.50] Stream and Wetland Restoration Design
ENGG*6840 [0.50] Open Channel Hydraulics
ENGG*6140 [0.50] Optimization Techniques for Engineering
ENGG*4510 [0.50] Risk Assessment and Management
ENGG*6880 [0.50] Advanced Water and Wastewater Treatment
ENVS*6280 [0.50] Soil Physics
RPD*6310 [0.50] Environmental Impact Assessment
ENGG*4250 [0.50] Watershed Systems Design2
ENGG*4360 [0.50] Soil-Water Conservation Systems Design2
ENGG*4370 [0.50] Urban Water Systems Design2

In addition to the courses above, the course ENGG*6910 must be completed. This is a 0.5 credit, one semester course. For each of these an area of emphasis from one of the following three areas1 must be selected:

Watershed Systems Design
Soil-Water Conservation Systems Design
Urban Water Systems Design

For this special topics course the project must focus on sustainability of water resources within the area of emphasis selected.

1Only one of these courses may be selected.
2If one of the undergraduate courses listed above are selected, the area of emphasis for this course must differ from the undergraduate course.

Interdepartmental Programs

MSc Food Safety and Quality Assurance

The School of Engineering participates in the MSc program in food safety and quality assurance. Those faculty members whose research and teaching expertise includes aspects of food safety and quality assurance may serve as advisors for MSc students. Please consult the Food Safety and Quality Assurance listing for a detailed description of the MSc program.

Collaborative Specializations

International Development Studies

The School of Engineering participates in the MEng, MAsc and PhD collaborative specialization in International Development Studies (IDS). The International Development Studies collaborative specialization provides an interdisciplinary framework for the study of international development combining training in a selected academic discipline with exposure to a broad range of social science perspectives. This collaborative specialization will add the designation “International Development Studies” to your program. Applicants apply directly through the School of Engineering and must meet the University of Guelph and department program admission requirements. Students should consult the International Development Studies listing to confirm the IDS collaborative specialization requirements.

Artificial Intelligence

The School of Engineering participates in the collaborative specialization in Artificial Intelligence. MAsc students wishing to undertake thesis research with an emphasis on artificial intelligence are eligible to apply to register concurrently in Engineering and the collaborative specialization. Students should consult the Artificial Intelligence listing for more information.
Computer Engineering

ENGG*6130 Physical Properties of Biomaterials U [0.50]
Rheology and rheological properties. Contact stresses between bodies in compression. Mechanical damage. Aerodynamic and hydro-dynamic characteristics. Friction.

Department(s): School of Engineering

ENGG*6150 Bio-Instrumentation U [0.50]

Restriction(s): ENGG*3450 or equivalent.

Department(s): School of Engineering

ENGG*6160 Advanced Food Engineering U [0.50]
Application of heat and mass transfer, fluid flow, food properties, and food-processing constraints in the design and selection of food process equipment. Development of process specifications for the control of the flow of heat and moisture and the associated microbial, nutritional and organoleptic change in foods. Food system dynamics and process development.

Department(s): School of Engineering

ENGG*6170 Special Topics in Food Engineering U [0.50]
A course of directed study involving selected readings and analyses in developing knowledge areas of food engineering.

Department(s): School of Engineering

ENGG*6180 Final Project in Biological Engineering U [1.00]
A project course in which a problem of advanced design or analysis in the area of biological engineering is established, an investigation is performed and a final design or solution is presented.

Restriction(s): This course is open only to students in the biological MEng program.

Department(s): School of Engineering

ENGG*6190 Special Topics in Biological Engineering U [0.50]
A course of directed study involving selected readings and analyses in developing knowledge areas of biological engineering.

Department(s): School of Engineering

ENGG*6300 Research Methods in Bioengineering U [0.50]
Research methodologies used in bioengineering are reviewed and assessed in the context of a diverse range of applications: biomechanics, control and instrumentation, ergonomics, diagnostic tools, biomaterials and food safety. The scientific method is discussed in terms of defining research problems, appropriate tests and hypotheses, experimental methods, data analysis and drawing conclusions. The objective is to guide students as they develop a coherent research proposal and deepen their understanding of the breadth of the discipline. (Offered in alternate years)

Restriction(s): Instructor consent required.

Department(s): School of Engineering

ENGG*6440 Advanced Biomechanical Design U [0.50]
Biomechanical Design from concept through prototyping and testing. This course will investigate and apply techniques used for biomechanical design including reverse engineering, solid modelling, geometric tolerancing, testing and rapid prototyping. Instructor's signature required.

Department(s): School of Engineering

Computer Engineering

ENGG*6450 Queueing Theory & Traffic Modeling in Data Networks U [0.50]

Restriction(s): Engineering graduate students. Instructor consent required.

Department(s): School of Engineering

ENGG*6510 Analog Integrated Circuit Design U [0.50]
In this course, operating principles and design techniques of analog integrated circuits are introduced with emphasis on device and system modelling. These circuits include analog and switched-capacitor filters, data converters, amplifiers, oscillators, modulators, circuits for communications, sensor readout channels, and circuits for integrated memories. It is recommended that students are familiar with the fundamentals of linear systems, circuit analysis, and electronic devices.

Department(s): School of Engineering

Environmental Engineering

ENGG*6610 Urban Stormwater Management U [0.50]
Continuous stormwater management models and model structure. Catchment discretization and process disaggregation. Pollutant build-up, wash off and transport. Flow and pollutant routing in complex, looped, partially surcharged pipe/channel networks including pond storage, storage tanks, diversion structures, transverse and side weirs, pump stations, orifices, radical and leaf gates and transient receiving water conditions (including tides). Pollutant removal in sewer networks, storage facilities and treatment plants.

Department(s): School of Engineering

ENGG*6630 Environmental Contaminants: Fate Mechanisms U [0.50]
Analysis of fate mechanisms associated with environmental contaminants. Focus on substances which are generally considered to be hazardous to humans, or other animal life at low concentrations. Study of physicochemical properties and fate estimation on control and remediation strategies. Quantitative analysis of contaminant partitioning and mass flows, including cross-media transport and simultaneous action of contaminant fate mechanisms.

Department(s): School of Engineering
ENGG*6650 Advanced Air Quality Modelling U [0.50]

Analysis of analytical and computational models used to predict the fate of airborne contaminants; role of air quality models for the solution of engineering-related problems; analysis of important boundary layer meteorology phenomena that influence the fate of air pollutants; conservation equations and mathematical solution techniques; model input requirements such as emissions inventories; Gaussian models; higher-order closure models.

Restriction(s): School of Engineering

ENGG*6660 Renewable Energy U [0.50]

The engineering principles of renewable energy technologies including wind, solar, geothermal and biomass will be examined, including technology-specific design, economic and environmental constraints. Students will compare the relative merits of different energy technologies and gain a knowledge base for further study in the field.

Restriction(s): Engineering graduate students. Instructor consent required.

Department(s): School of Engineering

ENGG*6670 Hazardous Waste Management U [0.50]

This course will define the different types of hazardous wastes that currently exist and outline the pertinent legislation governing these wastes. Information will be presented on different ways to handle, treat and dispose the hazardous waste, including separation, segregation, minimization, recycling and chemical, physical, biological, and thermal treatment. Also to be discussed are hazardous waste landfills and site remediation technologies. Specifics include design and operation of hazardous landfill sites, handling and treatment of leachate, comparison of pertinent soil remediation technologies. Case studies will be reviewed.

Restriction(s): School of Engineering

ENGG*6680 Advanced Water and Wastewater Treatment U [0.50]

This design course will discuss advanced technologies not traditionally covered during an undergraduate curriculum. An important consideration will be the reuse of water.

Restriction(s): School of Engineering

ENGG*6790 Special Topics in Environmental Engineering U [0.50]

A course of directed study involving selected readings and analyses in developing knowledge areas of environmental engineering.

Restriction(s): School of Engineering

ENGG*6950 Final Project in Environmental Engineering U [1.00]

A project course in which a problem of advanced design or analysis in the area of environmental engineering is established, an investigation is performed and a final design or solution is presented.

Restriction(s): This course is only open to students in the Environmental MEng program.

Department(s): School of Engineering

Engineering Systems and Computing

ENGG*6607 Medical Imaging U [0.50]

Digital image processing techniques including filtering and restoration; physics of image formation for such modalities as radiography, MRI, ultrasound.

Prerequisite(s): ENGG*3390 or equivalent

Department(s): School of Engineering

ENGG*6100 Machine Vision U [0.50]

Computer vision studies how computers can analyze and perceive the world using input from imaging devices. Topics covered include image pre-processing, segmentation, shape analysis, object recognition, image understanding, 3D vision, motion and stereo analysis, as well as case studies.

Restriction(s): School of Engineering

ENGG*6140 Optimization Techniques for Engineering U [0.50]

This course serves as a graduate introduction into combinatorics and optimization. Optimization is the main pillar of Engineering and the performance of most systems can be improved through intelligent use of optimization algorithms. Topics to be covered: Complexity theory, Linear/Integer Programming techniques, Constrained/Unconstrained optimization and Nonlinear programming, Heuristic Search Techniques such as Tabu Search, Genetic Algorithms, Simulated Annealing and GRASP.

Department(s): School of Engineering

ENGG*6150 Mobile Devices App Development U [0.50]

This course provides an introduction to developing applications for mobile devices. The emphasis will be on the fundamentals of mobile application programming. This is primarily a project-based course in which the goal is to produce a working app by the end of the course. The purpose of this course is to create new inter-disciplinary applications of mobile devices. Graduate students from all disciplines at the University of Guelph are invited to take the course for credit.

Restriction(s): School of Engineering
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Department(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*6370</td>
<td>Heat Transfer in Porous Media U [0.50]</td>
<td></td>
<td>Course covers general conservation equations for studying the flow and heat transfer through porous media. Application and case studies of porous materials will be discussed. Modelling techniques will be shown for a particular application area. Background in Heat Transfer required. (Offered in alternate years)</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>ENGG*6380</td>
<td>Simulation Analysis of Discrete Event Systems U [0.50]</td>
<td></td>
<td>Many complex engineering, operations, and business systems can be modeled as discrete-event systems. Efficient management and operation of these systems requires simulation to study their performance. Case studies and applications will be presented and discussed. (Offered in alternate years)</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>ENGG*6390</td>
<td>Final Project in Mechanical Engineering U [1.00]</td>
<td></td>
<td>A project course in which a problem of advanced design or analysis in the area of mechanical engineering is established, an investigation is performed and a final design or solution is presented.</td>
<td>School of Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restriction(s): This course is only open to students registered in the School of Engineering.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Department(s): School of Engineering</td>
<td></td>
</tr>
<tr>
<td>ENGG*6740</td>
<td>Ground Water Modelling U [0.50]</td>
<td></td>
<td>Introduction to current groundwater issues, definition of terms, review of fundamental equations describing fluid and contaminant transport in saturated groundwater zones. Mathematical techniques (analytical, FE and FD) for the solution of the fundamental equations. Application of numerical groundwater models to a variety of situations. Case studies. Review of groundwater models used in industry.</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>ENGG*6800</td>
<td>Deterministic Hydrological Modelling U [0.50]</td>
<td></td>
<td>Deterministic hydrological models. Function of watershed models for hydraulic design, environmental assessment, operation of water control structures, flood warning. Calculation algorithms.</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>ENGG*6820</td>
<td>Measurement of Water Quantity and Quality U [0.50]</td>
<td></td>
<td>This course covers techniques used to measure rates of movement and amounts of water occurring as precipitation, soil water, ground water and streamflow. Available measurements of water quality are surveyed. Calculation procedures involved in the use of indirect indicators of water quantity and quality individually and in combination are described.</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>ENGG*6840</td>
<td>Open Channel Hydraulics U [0.50]</td>
<td></td>
<td>Basic concepts, energy principle; momentum principle; flow resistance; non-uniform flow; channel controls and transitions; unsteady flow; flood routing.</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>ENGG*6860</td>
<td>Stream and Wetland Restoration Design U [0.50]</td>
<td></td>
<td>Explores the multi-disciplinary principles of stream and wetland restoration and the tools and techniques for restoration design. Restoration design is approached from a water resources engineering perspective with emphasis on hydrological and hydraulic techniques. Numerous case studies are examined as a means to identify more successful design approaches.</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>ENGG*6880</td>
<td>Soil Erosion and Fluvial Sedimentation U [0.50]</td>
<td></td>
<td>Students will be able to (i) describe processes related to soil erosion by water, (ii) describe processes related to fluvial sedimentation, (iii) evaluate and prescribe structural and non-structural control methods, and (iv) run at least one soil erosion/fluvial sedimentation computer model if the course is satisfactorily completed.</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>ENGG*6900</td>
<td>Final Project in Water Resources Engineering U [1.00]</td>
<td></td>
<td>A project course in which an advanced design problem in the area of watershed engineering is established, a feasibility investigation performed and a final design presented.</td>
<td>School of Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restriction(s): This course is open only to students in the water resources MEng program.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Department(s): School of Engineering</td>
<td></td>
</tr>
<tr>
<td>ENGG*6910</td>
<td>Special Topics in Water Resources Engineering U [0.50]</td>
<td></td>
<td>A course of directed study involving selected readings and analyses in developing knowledge areas of water resources engineering.</td>
<td>School of Engineering</td>
</tr>
</tbody>
</table>