2017-2018 Graduate Calendar

The information published in this Graduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2017-2018 academic years, including the Summer Semester 2017, Fall Semester 2017 and the Winter Semester 2018.

For your convenience the Graduate Calendar is available in PDF format.

If you wish to link to the Graduate Calendar please refer to the Linking Guidelines.

The University is a full member of:

- The Association of Universities and Colleges of Canada

Contact Information:

University of Guelph
Guelph, Ontario, Canada
N1G 2W1
519-824-4120

Revision Information:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 5, 2017</td>
<td>Initial Publication</td>
</tr>
<tr>
<td>June 19, 2017</td>
<td>Revision 1</td>
</tr>
</tbody>
</table>
Disclaimer

The Office of Graduate Studies has attempted to ensure the accuracy of this on-line Graduate Calendar. However, the publication of information in this document does not bind the university to the provision of courses, programs, schedules of studies, fees, or facilities as listed herein.

Limitations

The University of Guelph reserves the right to change without notice any information contained in this calendar, including any rule or regulation pertaining to the standards for admission to, the requirements for the continuation of study in, and the requirements for the granting of degrees or diplomas in any or all of its programs.

The university will not be liable for any interruption in, or cancellation of, any academic activities as set forth in this calendar and related information where such interruption is caused by fire, strike, lock-out, inability to procure materials or trades, restrictive laws or governmental regulations, actions taken by the faculty, staff or students of the university or by others, civil unrest or disobedience, Public Health Emergencies, or any other cause of any kind beyond the reasonable control of the university.

The University of Guelph reaffirms section 1 of the Ontario Human Rights Code, 1981, which prohibits discrimination on the grounds of race, ancestry, place of origin, colour, ethnic origin, citizenship, creed, sex, sexual orientation, handicap, age, marital status or family status.

The university encourages applications from women, aboriginal peoples, visible minorities, persons with disabilities, and members of other under-represented groups.
Introduction

Collection, Use and Disclosure of Personal Information

Personal information is collected under the authority of the University of Guelph Act (1964), and in accordance with Ontario’s Freedom of Information and Protection of Privacy Act (FIPPA) http://www.e-laws.gov.on.ca/DBLaws/Statutes/English/90f31_e.htm. This information is used by University officials in order to carry out their authorized academic and administrative responsibilities and also to establish a relationship for alumni and development purposes. Certain personal information is disclosed to external agencies, including the Ontario Universities Application Centre, the Ministry of Training, Colleges and Universities, and Statistics Canada, for statistical and planning purposes, and is disclosed to other individuals or organizations in accordance with the Office of Registrarial Services Departmental Policy on the Release of Student Information. For details on the use and disclosure of this information call the Office of Registrarial Services at the University at (519) 824-4120 or see https://www.uoguelph.ca/registrar/

Statistics Canada - Notification of Disclosure

For further information, please see Statistics Canada's web site at http://www.statcan.gc.ca and Section XIV Statistics Canada.

Address for University Communication

Depending on the nature and timing of the communication, the University may use one of these addresses to communicate with students. Students are, therefore, responsible for checking all of the following on a regular basis:

Email Address

The University issued email address is considered an official means of communication with the student and will be used for correspondence from the University. Students are responsible for monitoring their University-issued email account regularly.

Home Address

Students are responsible for maintaining a current mailing address with the University. Address changes can be made, in writing, through the Office of Graduate Studies.

Name Changes

The University of Guelph is committed to the integrity of its student records, therefore, each student is required to provide either on application for admission or on personal data forms required for registration, his/her complete, legal name. Any requests to change a name, by means of alteration, deletion, substitution or addition, must be accompanied by appropriate supporting documentation.

Student Confidentiality and Release of Student Information Policy Excerpt

The University undertakes to protect the privacy of each student and the confidentiality of his or her record. To this end the University shall refuse to disclose personal information to any person other than the individual to whom the information relates where disclosure would constitute an unjustified invasion of the personal privacy of that person or of any other individual. All members of the University community must respect the confidential nature of the student information which they acquire in the course of their work.

Complete policy at http://www.uoguelph.ca/policies.
Table of Contents

Engineering ... 74
 Administrative Staff .. 74
 Graduate Faculty ... 74
 Associated Graduate Faculty ... 75
 MASc Program .. 75
 MEng Program .. 75
 PhD Program .. 76
 Diploma Program ... 76
 Interdepartmental Programs ... 76
 Collaborative Specializations .. 76
 Courses ... 76
Engineering

The graduate degree programs offered in the School of Engineering include a course-work MEng and research thesis programs at the MASc and PhD levels. All programs are offered as full- or part-time studies. These programs provide for specialization in five fields of study: 1) Biological Engineering 2) Environmental Engineering 3) Engineering Systems and Computing 4) Mechanical Engineering 5) Water Resources Engineering. In addition, the School of Engineering offers two graduate diploma programs: Modelling Applications and Specialized Engineering.

- **Biological Engineering** involves development of digital or special purpose computing; VLSI circuit design and layout; analog integrated circuits control systems; micro-electromechanical (MEMS) devices; embedded systems and closed-loop supply chain management, product life assessment and engineering management.

- **Environmental Engineering** involves methods to prevent or mitigate damage to the environment by the reduction, treatment, or reclamation of solid, liquid, or gaseous by-products of industrial, agricultural and municipal activities. Emphasis is on the behaviour and fate of contaminants in the environment. Recent research topics include the following: composting of organic solids; control and remediation of chemical spills; wastewater treatment; soil/site remediation technology; policy innovations; air pollution and meteorology; vapour exchange and supercritical fluid extraction; air-surface pollutant exchange measurement; bio-filtration and membrane technologies; modelling of environmental processes.

- **Engineering Systems and Computing** involves development of digital or microelectronic devices, computer or robotic technologies and their application to manufacturing, computing, mechatronic or embedded systems. Some active research areas include: soft computing and neural networks; autonomous robots; intelligent control systems; micro-electromechanical (MEMS) devices; embedded systems and special purpose computing; VLSI circuit design and layout; analog integrated circuits and system-on-chip design; integrated sensor systems and networks; digital devices and signal processing; wireless and optical communication systems; cryptographic systems.

- **Mechanical Engineering** combines individual depth of experience and competence in a particular chosen major specialty with a strong background in the basic and engineering sciences. It strives to develop professional independence, creativity, leadership, and the capacity for continuing professional and intellectual growth. To help support the objectives of graduate degree programs at Guelph, an interdisciplinary learning environment is provided. Research areas that are pertinent and in line with Guelph’s vision include: sustainable energy, sustainable mobility, sustainable design and planning of urban and rural watersheds. Research areas include: water quality control and safety; resource use and groundwater quality; hydrologic modelling; design and planning of urban water and sewage infrastructure; rural waste treatment systems; erosion control; non-point source pollution and mitigation; Geographic Information Systems (GIS); sediment and contaminant transport; irrigation and drainage modelling.

- **Water Resources Engineering** involves investigation, analysis and design of systems for control and utilization of land and water resources as part of the management of urban and rural watersheds. Research areas include: water quality control and safety; resource use and groundwater quality; hydrologic modelling; design and planning of urban water and sewage infrastructure; rural waste treatment systems; erosion control; non-point source pollution and mitigation; Geographic Information Systems (GIS); sediment and contaminant transport; irrigation and drainage modelling.

Administrative Staff

Director

Hussein A. Abdullah (Thornbrough 2408, Ext. 52430)
soedir@uoguelph.ca

Associate Director, Undergraduate Studies

John Runciman (Thornbrough 1344, Ext. 53072)
jruncima@uoguelph.ca

Associate Director, Graduate Studies

Animesh Dutta (Thornbrough 1407, Ext. 52441)
soeadgr@uoguelph.ca

Graduate Program Assistant

Jacqueline Foley (Thornbrough 1405, Ext. 56187)
soograd@uoguelph.ca

Academic and Administrative Support Secretary

Hannah Smith (Thornbrough 1404, Ext. 56151)
soegradm@uoguelph.ca

Graduate Faculty

Bassim Abbassi

BSc Yarmouk Univ., MSc Jordan Univ. of Science and Technology, PhD Univ. of Bremen - Associate Professor

Hussein A. Abdullah

BSc Univ. of Technology, MSc, PhD Glasgow, P.Eng - Professor and Director

Wael Ahmed

BSc, MSc Alexandria University, PhD McMaster, P.Eng - Associate Professor

Amir Abbas Aliabadi

BA.Sc, MASc Toronto, PhD British Columbia - Assistant Professor

Manick Annamalai

BE, ME Tamilnadu Agricultural University, PhD Manitoba, P.Eng - Associate Professor

Shawki Areibi

BASc Al-Fateh, MASc Waterloo, PhD Waterloo, P.Eng - Professor

Alexander Bardelech

BA.Sc, MASc, PhD Waterloo - Assistant Professor

Mohammad Bigrigarbiag

BSc Tehran, MA Toronto, PhD Waterloo, P.Eng - Associate Professor

Andrew Binns

BSc, MSc, PhD Queen’s - Assistant Professor

Andrea L. Bradford

BSc, PhD Queen’s, P.Eng - Associate Professor

Sheng Chang

BEng Chengdu Univ., PhD New South Wales, P.Eng - Associate Professor

Emily Chiang

BA.Sc, MASc Toronto, PhD Univ. of Leuven, P.Eng - Assistant Professor

Ryan Clemmer

BSc, PhD Waterloo, P.Eng - Associate Professor

Christopher Collier

BMus Toronto, BASc, PhD British Columbia - Assistant Professor

Prasad Daggupati

BS Acharya, MS, PhD Kansas State - Assistant Professor

Fanthahun Defersha

BSc Ethiopia, MEng India, PhD Concordia, P.Eng - Assistant Professor

Ibrahim Deib

BSc, MSc Kuwait Univ., PhD McMaster, P.Eng - Associate Professor

Robert Dony

BASc, MASc Waterloo, PhD McMaster, P.Eng, FIET, FEC - Associate Professor

Animesh Dutta

BSc Bangladesh, MEng Thailand, PhD Dalhousie, P.Eng - Associate Professor

Andrew Gadsden

BEng, PhD McMaster, P. Eng, P.M.P. - Assistant Professor

Bahram Gharabaghi

BSc Iran Univ. of Science and Technology, MSc Sharrif Univ. of Science and Technology, PhD Guelph, P.Eng - Professor

Karen D. Gordon

BS Guelph, PhD Western Ontario, P.Eng - Associate Professor and Associate Dean (Academic), College of Physical & Engineering Science

Stefano Gregori

Laurea, Doctorate Univ. of Pavia - Associate Professor

Marwan Hassan

BS Helwan Univ., MS Tuskegee Univ., PhD McMaster, P.Eng - Professor

Juna Levison

BASc, PhD Queens, RIT - Assistant Professor

Wm. David Lubitz

BSc, MSc, PhD California, P.Eng - Associate Professor

Shobhel Mahmud

BSc, MSc Bangladesh Univ. of Engineering and Technology, PhD Waterloo, P.Eng - Associate Professor

Edward McBean

BASc, UBC, S.M., C.E., PhD Massachusetts Institute of Technology, P.Eng - Professor

Manjusri Misra

BSc, MSc, MPhil, PhD Utkal - Professor

Medhat A. Moussa

BSc American, MASC Moncton, PhD Waterloo, P.Eng - Professor

Soha Moussa

BS American, MASC Moncton, P.Eng - Assistant Professor

Radu Muresan

Dipl. Engg Technical Univ. of Cluj-Napoca (Romania); MASC, PhD Waterloo, P.Eng - Associate Professor

Suresh Neethirajan

B, Ag.Eng Tamil Nadu, MA and PhD Manitoba, P.Eng - Associate Professor

Michele L. Oliver

BPE McMaster, MPE, MSc, PhD New Brunswick, P.Eng - Professor

Beth Parker

BS Pennsylvania, MS North Carolina, PhD Waterloo - Professor

2017-2018 Graduate Calendar

June 19, 2017
Admission Requirements

Applicants must be graduates of an honours engineering program with at least a 70% average in the past four full semesters or the last two complete undergraduate years or the equivalent. International degree and grade equivalents will be determined by the Office of Graduate Studies.

Applicants must demonstrate acceptable analytical ability by having taken a sufficient number of courses in mathematics, and the physical sciences.

Biological Engineering applicants must have a minimum of three of the following courses or equivalents:

- Biological/Food/Bioprocess Engineering
- Engineering Unit Operations
- Bioreactor Design
- Bioinstrumentation Design
- Food Process Engineering Design
- Digital Process Control Design
- Heat and Mass Transfer
- Process Engineering

Environmental Engineering applicants must have a minimum of three of the following courses or equivalents:

- Introduction to Environmental Engineering
- Engineering Unit Operations
- Water Quality
- Air Quality
- Solid Waste Management
- Water and Wastewater Treatment

Water Resources Engineering applicants must have a minimum of three of the following courses or equivalents:

- Fluid Mechanics
- Water Management
- Hydrology
- Water Quality
- Urban Water Systems
- Watershed Structures
- Soil and Water Conservation

Engineering Systems and Computing applicants must have a minimum of three of the following courses or equivalents:

- Electric Circuits
- Digital Systems
- Systems and Control Theory
- Programming
- Electronics
- Robotics

Mechanical Engineering applicants must have a minimum of three of the following courses or equivalents:

- Thermo-fluids
- Heat Transfer
- Solid mechanics
- Material science
- Dynamic System and controls
- Manufacturing processes
- Electrical circuits
- Machine Design
- Quality control
- Intelligent manufacturing

Applicant qualifications may be assessed via an entrance interview/oral examination conducted by the proposed advisor and one member of the School of Engineering Graduate Program Committee. Students deficient in certain areas will be required to take make-up undergraduate courses. Such students will be admitted and allowed to continue on provisional status for a maximum of two semesters or until the requirements are completed. These courses will not count toward the student's graduate credit requirements.
Degree Requirements

The prescribed program of studies consists of at least 5.0 credits acceptable for graduate credit. This includes 2.5 credits from the program core (see the School of Engineering Graduate Handbook), and 2.5 additional credits chosen from approved courses (section 5.5 of the School of Engineering Graduate Handbook). No more than 1.0 of these credits will be for undergraduate engineering courses, as approved by the Director, and no more than 1.5 credits will be from courses offered outside the School of Engineering. For the final project course (1.0 credit), one member of the graduate faculty will be appointed by the Associate Director, Graduate Studies as an advisor.

PhD Program

The PhD program prepares candidates for a career in engineering teaching, research, or consulting. The program is designed to provide both broad knowledge of engineering science and training in advanced research. Doctoral research carries the expectation of making an original contribution to the body of existing knowledge or technology. It is also expected that the responsibility of problem definition and solution is that of the student, and that the student's advisor acts truly in an advisory capacity. Therefore, graduates are expected to have acquired autonomy in defining and analyzing problems, conducting research, and preparing scholarly publications. These objectives are achieved through a combination of course work, independent research, a qualifying examination, and the production and defence of a research dissertation.

Admission Requirements

The minimum academic requirement for admission to the PhD program is normally a recognized Master's degree in engineering. Applicants are usually required to have completed a Bachelor's and a Master's degree from a recognized post-secondary institution and must have achieved a minimum B average in their Master's program. Applicants must also have demonstrated strong potential for research. A strong recommendation from the MAsc advisor is necessary. Direct admission to the PhD program from a Bachelor's program is rarely granted. Applicants requesting direct admission must hold a bachelor's degree with exceptionally high academic standing and have related research experience. Such applicants should discuss this option with the Associate Director, Graduate Studies at the earliest opportunity.

Degree Requirements

The prescribed program of study must consist of no fewer than 2.0 credits in addition to those taken as part of the MAsc degree. At least 1.5 of the credits must be at the graduate level, and at least 1.0 must be engineering graduate courses. Under special circumstances and with the approval of the Director, the school may reduce the requirement for 1.5 credit course requirement; however the 1.0 graduate-engineering-course credit requirement will not be changed. In all cases the remaining courses must be acceptable for graduate credit; that is, they must be either graduate courses or senior undergraduate courses. Depending on the student's background, the advisory committee may specify more than four courses, including undergraduate make-up courses. If make-up courses are deemed necessary, they will be considered additional courses.

The qualifying examination as outlined in the Graduate Calendar is held by the end of the fourth semester but no later than the fifth semester after the student has completed the required courses.

Diploma Program

The objective of the graduate diploma is to provide mid-career, engineering professionals from Canada and abroad with post graduate education and training to improve their job-related expertise within an 8 month period. The program enhances the ability of these professionals to gain employment in the field of Water Resources engineering by developing specialized knowledge in one of two areas of Water Resources. The first area will emphasize higher learning in the application of Modelling in a Water Resources context. Application of existing tools, particularly GIS, to a variety of contemporary water resources problems will be emphasized. The second area focuses on the Design of Sustainable Water Resources Systems that will be sustainable in today's development environment.

Admission Requirements

Students with an honours degree will be considered for the Graduate Diploma program provided they have satisfactory preparation in mathematical and physical sciences. A minimum average grade of 70% for the last four full-time semesters, or the last two complete undergraduate years, prior to entry will normally be required.

Since an adequate background in undergraduate engineering courses is prerequisite for courses offered in the program, there is a requirement of the following courses or equivalent.

ENGG*2230 Fluid Mechanics
ENGG*3650 Hydrology
ENGG*3340 Geographic Information Systems

The qualification will be assessed by transcripts supplied by the student at the time of application. Students deficient in certain areas will be required to take make-up undergraduate courses as decided by the Graduate Program Committee. The student will be admitted on probation until the requirements have been completed. These courses will not count toward the student graduate degree requirement.

Diploma Requirements

The prescribed program consists of 2.0 credits acceptable at the graduate level.

Modelling Applications in Water Resource Engineering

The core courses consist of a total of 2.0 credits. 1.5 credits must come from the list below.

One of these must be ENGG*6800.

ENGG*6800 [0.50] Deterministic Hydrological Modelling
ENGG*6740 [0.50] Ground Water Modelling
ENGG*6840 [0.50] Open Channel Hydraulics
ENGG*6880 [0.50] Soil Erosion and Fluvial Sedimentation
ENGG*6530 [0.50] Finite Difference Methods
ENGG*6550 [0.50] Finite Element Methods
ENGG*4510 [0.50] Risk Assessment and Management
ENGG*6600 [0.50] Engineering Systems Modelling and Simulation

In addition, the student must complete ENGG*6910. This is a 0.5 credit, 1 semester course. This special topics course will focus on one of the following areas:

Watershed Systems Design
Soil-Water Conservation Systems Design
Urban Water Systems Design

And include a project utilizing a GIS-based modeling approach.

Engineering Design of Sustainable Water Resource Systems

The courses consist of a total of 2.0 credits. Two courses (1.0 credits) must be selected from the following courses:

ENGG*6610 [0.50] Urban Stormwater Management
ENGG*6860 [0.50] Stream and Wetland Restoration Design
ENGG*6840 [0.50] Open Channel Hydraulics
ENGG*6140 [0.50] Optimization Techniques for Engineering
ENGG*4510 [0.50] Risk Assessment and Management
ENGG*6680 [0.50] Advanced Water and Wastewater Treatment
ENVS*6280 [0.50] Soil Physics
RDP*6310 [0.50] Environmental Impact Assessment
ENGG*4250 [0.50] Watershed Systems Design2
ENGG*4360 [0.50] Soil-Water Conservation Systems Design2
ENGG*4370 [0.50] Urban Water Systems Design2

In addition to the courses above, the course ENGG*6910 must be completed. This is a 0.5 credit, one semester course. For each of these an area of emphasis from one of the following three areas1 must be selected:

Watershed Systems Design
Soil-Water Conservation Systems Design
Urban Water Systems Design

For this special topics course the project must focus on sustainability of water resources within the area of emphasis selected.

Only one of these courses may be selected.

If one of the undergraduate courses listed above are selected, the area of emphasis for this course must differ from the undergraduate course.

Interdepartmental Programs

MSc Food Safety and Quality Assurance

The School of Engineering participates in the MSc program in food safety and quality assurance. Those faculty members whose research and teaching expertise includes aspects of food safety and quality assurance may serve as advisors for MSc students. Please consult the Food Safety and Quality Assurance listing for a detailed description of the MSc program.

Collaborative Specializations

International Development Studies

The School of Engineering participates in the MEng, MAsc and PhD collaborative specialization in International Development Studies (IDS). The International Development Studies collaborative specialization provides an interdisciplinary framework for the study of international development combining training in a selected academic discipline with exposure to a broad range of social science perspectives. This collaborative specialization will add the designation “International Development Studies” to your program. Applicants apply directly through the School of Engineering and must meet the University of Guelph and department program admission requirements. Students should consult the International Development Studies listing to confirm the IDS collaborative specialization requirements.

Courses

General

ENGG*6000 Advanced Heat and Mass Transfer U [0.50]

Department(s): School of Engineering
ENGG*6100 Assessment of Engineering Risk U [0.50]
The question of "how safe is safe enough?" has no simple answer. In response, this course
develops the bases by which we can assess and manage risk in engineering. Course deals
with fate and transport issues associated with risk, as relevant to engineering and how
these aspects are employed in the making of decisions.
Prerequisite(s): STAT*2040 or STAT*2120
Department(s): School of Engineering

ENGG*6102 Advanced Fluid Mechanics U [0.50]
Laminar and turbulent flow. Turbulence and turbulence modelling. Boundary-layer flow.
Compressible flow. Potential flow.
Department(s): School of Engineering

ENGG*6103 Finite Difference Methods U [0.50]
Numerical solution of partial differential equations of flow through porous media; flow
of heat and vibrations; characterization of solution techniques and analysis of stability;
convergence and comparability criteria for various finite difference schemes.
Department(s): School of Engineering

ENGG*6105 Finite Element Methods U [0.50]
generation and layouts. Two-dimensional finite elements.
Department(s): School of Engineering

ENGG*6106 Engineering Systems Modelling and Simulation U [0.50]
A study of theoretical and experimental methods for characterizing the dynamic behaviour
of engineering systems. Distributed and lumped parameter model development. Digital
simulation of systems for design and control.
Department(s): School of Engineering

ENGG*6108 Engineering Seminar U [0.00]
The course objective is to train the student in preparing, delivering and evaluating technical
presentations. Each student is required to: (a) attend and write critiques on a minimum of
six technical seminars in the School of Engineering; and (b) conduct a seminar,
presenting technical material to an audience consisting of faculty and graduate students
in the school. This presentation will then be reviewed by the student and the instructor.
Department(s): School of Engineering

ENGG*6109 Special Topics in Engineering U [0.50]
A course of directed study involving selected readings and analyses in developing
knowledge areas which are applicable to several of the engineering disciplines in the
School of Engineering.
Department(s): School of Engineering

Biological Engineering

ENGG*6110 Food and Bio-Process Engineering U [0.50]
Kinetics of biological reactions, reactor dynamics and design. Food rheology and texture;
water activity and the role of water in food processing; unit operations design-thermal
processing; and drying, freezing and separation processes.
Department(s): School of Engineering

ENGG*6120 Fermentation Engineering U [0.50]
Modelling and design of fermenter systems. Topics include microbial growth kinetics,
reactor design, heat and mass transfer. Instrumentation and unit operations for feed
preparation and product recovery. Prerequisite: undergraduate course in each of
microbiology, heat and mass transfer, and biochemistry or bioprocess engineering.
Department(s): School of Engineering

ENGG*6130 Physical Properties of Biomaterials U [0.50]
Rheology and rheological properties. Contact stresses between bodies in compression.
Mechanical damage. Aerodynamic and hydro-dynamic characteristics. Friction.
Department(s): School of Engineering

ENGG*6150 Bio- Instrumentation U [0.50]
Restriction(s): ENGG*3450 or equivalent.
Department(s): School of Engineering

ENGG*6160 Advanced Food Engineering U [0.50]
Application of heat and mass transfer, fluid flow, food properties, and food-processing
constraints in the design and selection of food process equipment. Development of process
specifications for the control of the flow of heat and moisture and the associated microbial,
nutritional and organoleptic change in foods. Food system dynamics and process
development.
Department(s): School of Engineering

ENGG*6170 Special Topics in Food Engineering U [0.50]
A course of directed study involving selected readings and analyses in developing
knowledge areas of food engineering.
Department(s): School of Engineering

ENGG*6180 Final Project in Biological Engineering U [1.00]
A project course in which a problem of advanced design or analysis in the area of
biological engineering is established, an investigation is performed and a final design or
solution is presented.
Restriction(s): This course is open only to students in the biological MEng program.
Department(s): School of Engineering

ENGG*6190 Special Topics in Biological Engineering U [0.50]
A course of directed study involving selected readings and analyses in developing
knowledge areas of biological engineering.
Department(s): School of Engineering

Environmental Engineering

ENGG*6610 Urban Stormwater Management U [0.50]
Continuous stormwater management models and model structure. Catchment discretization
and process disaggregation. Pollutant build-up, wash off and transport. Flow and pollutant
routing in complex, looped, partially surcharged pipe/channel networks including pond
storage, storage tanks, diversion structures, transverse and side weirs, pump stations,
orifices, radical and leaf gates and transient receiving water conditions (including tides).
Pollutant removal in sewer networks, storage facilities and treatment plants.
Department(s): School of Engineering

ENGG*6630 Environmental Contaminants: Fate Mechanisms U [0.50]
Analysis of fate mechanisms associated with environmental contaminants. Focus on
substances which are generally considered to be hazardous to humans, or other animal
life at low concentrations. Study of physicochemical properties and fate estimation on
control and remediation strategies. Quantitative analysis of contaminant partitioning and
mass flows, including cross-media transport and simultaneous action of contaminant fate
mechanisms.
Department(s): School of Engineering

ENGG*6650 Advanced Air Quality Modelling U [0.50]
Analysis of analytical and computational models used to predict the fate of airborne
contaminants; role of air quality models for the solution of engineering-related problems;
analysis of important boundary layer meteorology phenomena that influence the fate of
air pollutants; conservation equations and mathematical solution techniques; model input
requirements such as emissions inventories; Gaussian models; higher-order closure
models; Eulerian photochemical grid models.
Department(s): School of Engineering

ENGG*6660 Renewable Energy U [0.50]
The engineering principles of renewable energy technologies including wind, solar,
geothermal and biomass will be examined, including technology-specific design, economic
and environmental constraints. Students will compare the relative merits of different
energy technologies and gain a knowledge base for further study in the field.
Restriction(s): Engineering graduate students. Instructor consent required.
Department(s): School of Engineering

June 19, 2017
2017-2018 Graduate Calendar
ENGG*6670 Hazardous Waste Management U [0.50]
This course will define the different types of hazardous wastes that currently exist and outline the pertinent legislation governing these wastes. Information will be presented on different ways to handle, treat and dispose of the hazardous waste, including separation, segregation, minimization, recycling and chemical, physical, biological, and thermal treatment. Also to be discussed are hazardous waste landfills and site remediation technologies. Specifics include design and operation of hazardous landfill sites, handling and treatment of leachate, comparison of pertinent soil remediation technologies. Case studies will be reviewed.
Department(s): School of Engineering

ENGG*6680 Advanced Water and Wastewater Treatment U [0.50]
This design course will discuss advanced technologies not traditionally covered during an undergraduate curriculum. An important consideration will be the reuse of water.
Department(s): School of Engineering

ENGG*6790 Special Topics in Environmental Engineering U [0.50]
A course of directed study involving selected readings and analyses in developing knowledge areas of environmental engineering.
Department(s): School of Engineering

ENGG*6950 Final Project in Environmental Engineering U [1.00]
A project in which a problem of advanced design or analysis in the area of environmental engineering is established, an investigation is performed and a final design or solution is presented.
Restriction(s): This course is only open to students in the environmental MEng program.
Department(s): School of Engineering

Engineering Systems and Computing

ENGG*6070 Medical Imaging U [0.50]
Digital image processing techniques including filtering and restoration; physics of image formation for such modalities as radiography, MRI, ultrasound.
Prerequisite(s): ENGG*3390 or equivalent
Department(s): School of Engineering

ENGG*6100 Machine Vision U [0.50]
Computer vision studies how computers can analyze and perceive the world using input from imaging devices. Topics covered include image pre-processing, segmentation, shape analysis, object recognition, image understanding, 3D vision, motion and stereo analysis, as well as case studies.
Department(s): School of Engineering

ENGG*6140 Optimization Techniques for Engineering U [0.50]
This course serves as a graduate introduction into combinatorics and optimization. Optimization is the main pillar of Engineering and the performance of most systems can be improved through intelligent use of optimization algorithms. Topics to be covered: Complexity theory, Linear/Integer Programming techniques, Constrained/Unconstrained optimization and Nonlinear programming, Heuristic Search Techniques such as Tabu Search, Genetic Algorithms, Simulated Annealing and GRASP.
Department(s): School of Engineering

ENGG*6450 Queueing Theory & Traffic Modeling in Data Networks U [0.50]
Restriction(s): Engineering graduate students. Instructor consent required.
Department(s): School of Engineering

ENGG*6500 Introduction to Machine Learning U [0.50]
The aim of this course is to provide students with an introduction to algorithms and techniques of machine learning particularly in engineering applications. The emphasis will be on the fundamentals and not specific approach or software tool. Class discussions will cover and compare all current major approaches and their applicability to various engineering problems, while assignments and project will provide hands-on experience with some of the tools.
Department(s): School of Engineering

ENGG*6510 Analog Integrated Circuit Design U [0.50]
In this course, operating principles and design techniques of analog integrated circuits are introduced with emphasis on device and system modelling. These circuits include analog and switched-capacitor filters, data converters, amplifiers, oscillators, modulators, circuits for communications, sensor readout channels, and circuits for integrated memories. It is recommended that students are familiar with the fundamentals of linear systems, circuit analysis, and electronic devices.
Department(s): School of Engineering

ENGG*6520 VLSI Digital Systems Design U [0.50]
This course will introduce the principles of VLSI MOSFET digital design from a circuit and system perspective. Advanced topics include: power issues related to each level of design abstraction; voltage and frequency scaling; power to speed tradeoffs; ASIC digital design flow; Verilog integration/intergration; ASIC case studies. It is recommended that students are familiar with the fundamentals of digital circuits and electronic devices.
Department(s): School of Engineering

ENGG*6530 Reconfigurable Computing U [0.50]
This course serves as a graduate introduction into reconfigurable computing systems. It introduces students to the analyses, synthesis and design of embedded systems and implementing them using Field Programmable Gate Arrays. Topics include: Programmable Logic Devices, Hardware Description Languages, Computer Aided Design Flow, Hardware Accelerators, Hardware/Software Co-design techniques, Run Time Reconfiguration, High Level Synthesis. It is recommended that students are familiar with the fundamentals of digital design and hardware description languages.
Department(s): School of Engineering

ENGG*6540 Advanced Robotics U [0.50]
This course is intended for graduate students who have some knowledge and interest in robotics. The course covers modelling, design, planning control, sensors and programming of robotic systems. In addition to lectures, students will work on a term project in which a problem related to robotics systems will be studied. Instructors signature required.
Department(s): School of Engineering

ENGG*6550 Intelligent Real-Time Systems U [0.50]
Soft real-time systems, hard real-time systems, embedded systems, time handling and synchronization, deadlines, preemption, interruption, RTS languages, RTS/ operating systems, system life-cycle, petri nets, task scheduling and allocation, fault-tolerance, resource management, RTS/search techniques, dealing with uncertainty.
Department(s): School of Engineering

ENGG*6570 Advanced Soft Computing U [0.50]
Neural dynamics and computation from a single neuron to a neural network architecture. Advanced neural networks and applications. Soft computing approaches to uncertainty representation, multi-agents and optimization.
Prerequisite(s): ENGG*4430 or equivalent
Department(s): School of Engineering

ENGG*6580 Advanced Control Systems U [0.50]
This course will start with state space analysis of multi-input multi-output control systems. Then state space design will be presented. After that, nonlinear control systems and soft computing based intelligent control systems will be studied. Finally, hybrid control systems, H infinite control and uncertainty and robustness in control systems will be addressed.
Department(s): School of Engineering

ENGG*6590 Final Project in Engineering Systems and Computing U [1.00]
A project course in which a problem of advanced design or analysis in the area of Engineering Systems and Computing is established by the student, an investigation is performed, and a report on the final design or solution selected is presented.
Restriction(s): This course is only open to students in the engineering systems and computing MEng program.
Department(s): School of Engineering

ENGG*6600 Advanced Digital Signal Processing U [0.50]
Discrte-time signals and systems, z transform, frequency analysis of signals and systems, fourier transform, fast fourier transform, design of digital filters, signal reconstruction, power spectrum estimation.
Department(s): School of Engineering

ENGG*6640 Special Topics in Engineering Systems and Computing U [0.50]
A course of directed study involving selected readings and analyses in developing knowledge areas of Engineering Systems and Computing.
Department(s): School of Engineering

Mechanical Engineering

ENGG*6290 Special Topics in Mechanical Engineering U [0.50]
A course of directed study involving selected readings and analyses in developing knowledge areas of mechanical engineering.
Department(s): School of Engineering
ENGG*6310 Advanced Electromechanical Devices U [0.50]
Course covers: switched reluctance motor, brushless motor, linear motor, axial flux motor, and harmonic drive motor with applicable actuators. Other topics introduced include: Electromagnetic micro power generation, design and analysis of cooling systems and control mechanism. Background in electromagnetism required. (Offered in alternate years)

Department(s): School of Engineering

ENGG*6320 Advanced Topics in Mechatronics U [0.50]
This course covers materials related to mechatronics systems in terms of dynamics, control, sensing, estimation. The course covers advanced topics in these areas and provides students the tools to model, analyze, and control these systems. The focus is on vehicles and robots (mobile robots).

Department(s): School of Engineering

ENGG*6340 Bioenergy and Biofuels U [0.50]
Theoretical and hands-on experience in bio-renewable energy areas prepares students from diverse backgrounds for a career in the biorefinery industry, academia, or entrepreneurial endeavors. Also deals with the technologies of converting biomass into upgraded energy, value added products, fuels, and chemicals. Thermodynamics background helpful.

Department(s): School of Engineering

ENGG*6350 Flow Induced Vibrations U [0.50]
Course covers fluid-structure interaction problems with an emphasis on analytical and numerical methods. Topics include vortex and turbulence induced vibration, galloping and flutter, fluid-elastic instability, and acoustic resonance. Various case studies and applications will be discussed. Background in fluid mechanics and vibrations required. (Offered in alternate years)

Department(s): School of Engineering

ENGG*6360 Fuel Cell Technology U [0.50]
Examination of principles governing fuel cell technology and the technical challenges associated with developing fuel cell systems. Topics include the chemical thermodynamics and electrochemical kinetics of fuel cells, the evolution of fuel cell technology, and fuel cell system design. Background in materials and thermodynamics required.

Department(s): School of Engineering

ENGG*6370 Heat Transfer in Porous Media U [0.50]
Course covers general conservation equations for studying the flow and heat transfer through porous media. Application and case studies of porous media will be discussed. Modelling techniques will be shown for a particular application area. Background in Heat Transfer required. (Offered in alternate years)

Department(s): School of Engineering

ENGG*6380 Simulation Analysis of Discrete Event Systems U [0.50]
Many complex engineering, operations, and business systems can be modeled as discrete-event systems. Efficient management and operation of these systems requires simulation to study their performance. Case studies and applications will be presented and discussed. (Offered in alternate years)

Department(s): School of Engineering

ENGG*6390 Final Project in Mechanical Engineering U [1.00]
A project course in which a problem of advanced design or analysis in the area of mechanical engineering is established, an investigation is performed and a final design or solution is presented.

Restriction(s): This course is only open to students registered in the School of Engineering.

Department(s): School of Engineering

Water Resources Engineering

ENGG*6740 Ground Water Modelling U [0.50]
Introduction to current groundwater issues, definition of terms, review of fundamental equations describing fluid and contaminant transport in saturated groundwater zones. Mathematical techniques (analytical, FE and FD) for the solution of the fundamental equations. Application of numerical groundwater models to a variety of situations. Case studies. Review of groundwater models used in industry.

Department(s): School of Engineering

ENGG*6800 Deterministic Hydrological Modelling U [0.50]

Department(s): School of Engineering

ENGG*6820 Measurement of Water Quantity and Quality U [0.50]
This course covers techniques used to measure rates of movement and amounts of water occurring as precipitation, soil water, ground water and streamflow. Available measurements of water quality are surveyed. Calculation procedures involved in the use of indirect indicators of water quantity and quality individually and in combination are described.

Department(s): School of Engineering

ENGG*6840 Open Channel Hydraulics U [0.50]
Basic concepts, energy principle; momentum principle; flow resistance; non-uniform flow; channel controls and transitions; unsteady flow; flood routing.

Department(s): School of Engineering

ENGG*6860 Stream and Wetland Restoration Design U [0.50]
Explores the multi-disciplinary principles of stream and wetland restoration and the tools and techniques for restoration design. Restoration design is approached from a water resources engineering perspective with emphasis on hydrological and hydraulic techniques. Numerous case studies are examined as a means to identify more successful design approaches.

Prerequisite(s): ENGG*650 or equivalent.

Department(s): School of Engineering

ENGG*6880 Soil Erosion and Fluvial Sedimentation U [0.50]
Students will be able to (i) describe processes related to soil erosion by water, (ii) describe processes related to fluvial sedimentation, (iii) evaluate and prescribe structural and non-structural control methods, and (iv) run at least one soil erosion/fluvial sedimentation computer model if the course is satisfactorily completed.

Department(s): School of Engineering

ENGG*6900 Final Project in Water Resources Engineering U [1.00]
A project course in which an advanced design problem in the area of watershed engineering is established, a feasibility investigation performed and a final design presented.

Restriction(s): This course is open only to students in the water resources MEng program.

Department(s): School of Engineering

ENGG*6910 Special Topics in Water Resources Engineering U [0.50]
A course of directed study involving selected readings and analyses in developing knowledge areas of water resources engineering.

Department(s): School of Engineering