The information published in this Graduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2017-2018 academic years, including the Summer Semester 2017, Fall Semester 2017 and the Winter Semester 2018.

For your convenience the Graduate Calendar is available in PDF format.
If you wish to link to the Graduate Calendar please refer to the Linking Guidelines.

The University is a full member of:
• The Association of Universities and Colleges of Canada

Contact Information:

University of Guelph
Guelph, Ontario, Canada
N1G 2W1
519-824-4120

Revision Information:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 5, 2017</td>
<td>Initial Publication</td>
</tr>
<tr>
<td>June 19, 2017</td>
<td>Revision 1</td>
</tr>
</tbody>
</table>
Disclaimer
The Office of Graduate Studies has attempted to ensure the accuracy of this on-line Graduate Calendar. However, the publication of information in this document does not bind the university to the provision of courses, programs, schedules of studies, fees, or facilities as listed herein.

Limitations
The University of Guelph reserves the right to change without notice any information contained in this calendar, including any rule or regulation pertaining to the standards for admission to, the requirements for the continuation of study in, and the requirements for the granting of degrees or diplomas in any or all of its programs.

The university will not be liable for any interruption in, or cancellation of, any academic activities as set forth in this calendar and related information where such interruption is caused by fire, strike, lock-out, inability to procure materials or trades, restrictive laws or governmental regulations, actions taken by the faculty, staff or students of the university or by others, civil unrest or disobedience, Public Health Emergencies, or any other cause of any kind beyond the reasonable control of the university.

The University of Guelph reaffirms section 1 of the Ontario Human Rights Code, 1981, which prohibits discrimination on the grounds of race, ancestry, place of origin, colour, ethnic origin, citizenship, creed, sex, sexual orientation, handicap, age, marital status or family status.

The university encourages applications from women, aboriginal peoples, visible minorities, persons with disabilities, and members of other under-represented groups.
Introduction

Collection, Use and Disclosure of Personal Information

Personal information is collected under the authority of the University of Guelph Act (1964), and in accordance with Ontario's Freedom of Information and Protection of Privacy Act (FIPPA) [http://www.e-laws.gov.on.ca/DBLaws/Statutes/English/99f31_e.htm]. This information is used by University officials in order to carry out their authorized academic and administrative responsibilities and also to establish a relationship for alumni and development purposes. Certain personal information is disclosed to external agencies, including the Ontario Universities Application Centre, the Ministry of Training, Colleges and Universities, and Statistics Canada, for statistical and planning purposes, and is disclosed to other individuals or organizations in accordance with the Office of Registrarial Services Departmental Policy on the Release of Student Information. For details on the use and disclosure of this information call the Office of Registrarial Services at the University at (519) 824-4120 or see [https://www.uoguelph.ca/Registrar/].

Statistics Canada - Notification of Disclosure

For further information, please see Statistics Canada's web site at [http://www.statcan.gc.ca] and Section XIV Statistics Canada.

Address for University Communication

Depending on the nature and timing of the communication, the University may use one of these addresses to communicate with students. Students are, therefore, responsible for checking all of the following on a regular basis:

Email Address

The University issued email address is considered an official means of communication with the student and will be used for correspondence from the University. Students are responsible for monitoring their University-issued email account regularly.

Home Address

Students are responsible for maintaining a current mailing address with the University. Address changes can be made, in writing, through the Office of Graduate Studies.

Name Changes

The University of Guelph is committed to the integrity of its student records, therefore, each student is required to provide either on application for admission or on personal data forms required for registration, his/her complete, legal name. Any requests to change a name, by means of alteration, deletion, substitution or addition, must be accompanied by appropriate supporting documentation.

Student Confidentiality and Release of Student Information Policy Excerpt

The University undertakes to protect the privacy of each student and the confidentiality of his or her record. To this end the University shall refuse to disclose personal information to any person other than the individual to whom the information relates where disclosure would constitute an unjustified invasion of the personal privacy of that person or of any other individual. All members of the University community must respect the confidential nature of the student information which they acquire in the course of their work.

Complete policy at [http://www.uoguelph.ca/policies].
Table of Contents

Physics ... 143
 Administrative Staff ... 143
 Graduate Faculty ... 143
 Graduate Faculty from the University of Waterloo 143
 MSc Program .. 144
 PhD Program ... 145
 Interdepartmental Programs ... 145
 Courses .. 145
Physics

The Departments of Physics at the Universities of Guelph and Waterloo offer a joint program leading to MSc and PhD degrees in the following fields:

- Astrophysics and Gravitation
- Atomic, Molecular and Optical Physics
- Biophysics
- Chemical Physics
- Condensed Matter and Material Physics
- Industrial and Applied Physics
- Subatomic Physics
- Quantum Computing

The Guelph-Waterloo Physics Institute consists of members from both university departments and is administered by a joint co-ordinating committee. Students interested in graduate work in physics at either university should consult the application requirements and the on-line application procedures available from the web-site http://gwp.on.ca. Students are ultimately registered at the university at which their advisor is located. A student comes under the general regulations of the university at which he or she is registered, and the degree is granted by that university.

Administrative Staff

Graduate teaching and research in physics at the University of Guelph are operated through Graduate Studies in Physics, University of Guelph, University of Waterloo.

Director of the Institute

Melanie Campbell (Waterloo - (519) 888-4567, Ext. 36273)

mccampbell@uwaterloo.ca

Associate Director of the Institute

Robert Wickham (Guelph, 448 MacNaughton, Ext. 53704)
rwickham@uoguelph.ca

Assistant to the Director

Kiley Rider (Waterloo (519) 888-4567, Ext. 37598, Ext. Guelph (519) 824-4120 Ext. 52263)
gwp@uwaterloo.ca

Chair

Paul Garrett (Guelph, 220 MacNaughton, Ext. 52192)

garrett@uoguelph.ca

Graduate Program Coordinator

Robert Wickham (Guelph, 448 MacNaughton, Ext. 53704)
rwickham@uoguelph.ca

Associate Graduate Program Coordinator

Xiaorong Qin (449 MacNaughton, Ext. 53675)
xqin@uoguelph.ca

Graduate Program Assistant

Reggi Vallililde (209 MacNaughton, Ext. 52262)
rvalill@uoguelph.ca

Graduate Faculty

Leonid S. Brown
MSc, PhD Moscow State - Professor

John R. Dutcher
BSc Dalhousie, MSc British Columbia, PhD Simon Fraser - Professor and Canada Research Chair in Soft Matter & Biological Physics and Director Nanoscience

Paul E. Garrett
BSc Queen's, MSc, PhD McMaster - Professor, Chair

Ralf Gellert
Dipl Phys, PhD Darmstadt - Associate Professor

Alexandros Gezerlis
Dipl National Technical University Athens, PhD Urbana-Champaign - Assistant Professor

De-Tong Jiang
BSc Jilin, PhD Simon Fraser - Associate Professor

Stefan W. Kycia
BSc McGill; MS Pennsylvania; PhD Iowa - Associate Professor

Vladimir Ladjzhansky
BS Moscow Institute of Physics and Technology; MS, PhD Weizmann Institute of Science (Rehovot, Israel) - Professor and Canada Research Chair in Biophysics Tier II

Dennis Mülcher
BSc University of Cologne, Germany, Ph.D University of Cologne, Germany - Assistant Professor

Elisabeth J. Nicol
BSc Mount Allison, MSc, PhD McMaster - Professor

Joanne M. O'Meara
BSc, PhD McMaster - Professor

Eric Poisson

Xiao-Rong Qin
BSc Laval, MSc, PhD Alberta - Professor

Xiao-Rong Qin
BSc, MSc Tsinghua (Beijing), PhD Simon Fraser - Associate Professor and Associate Graduate Coordinator

Carl E. Svensson
BSc, PhD McMaster - Professor

Robert Wickham
BSc Toronto, PhD Chicago - Associate Professor and Graduate Coordinator, Associate Chair (Graduate), Associate Director Graduate Studies in Physics, University of Guelph, University of Waterloo

Martin Williams
PhD Imperial College, London - Associate Professor and Undergraduate Coordinator/Academic Counsellor, and Associate Chair (Undergraduate)

Graduate Faculty from the University of Waterloo

Nasser Abukheil
BSc Carnegie Mellon, MChE Carnegie Mellon, PhD McGill University - Assistant Professor

Naresh Afshordi
BA Iran, BSc Providence, PhD Princeton - Associate Professor

Michal Bajesy
BS Harvard, PhD Harvard - Assistant Professor

Michael Balogh
BSc McMaster, PhD Victoria - Professor and Associate Chair of Department of Physics and Astronomy

Dayan Ban
BSc, MSc University of Science and Technology China, PhD University of Toronto - Professor

Jonathan Baugh
BS Tennessee, PhD North Carolina - Associate Professor

Kostadinka Bizheva
BS, MS Plovdiv, MS, PhD Tufts - Associate Professor

Avery Broderick
BS Stony Brook, PhD CalTech - Associate Professor

Raffi Budakian
BS UCLA, MS UCLA, PhD UCLA - Professor

Anton Burkov
BS, MS Plovdiv, MS, PhD Tufts - Associate Professor

Melanie C. Campbell
BSc Toronto, MSc Waterloo, PhD Australian National, FAAO - Professor

Z.Y. "Jeff" Chen
BSc Fudan, PhD Maryland - Professor

Kyoung Soo Choi
BSc Stony Brook University, PhD CalTech - Assistant Professor

David Cory
BS, PhD Case Western Reserve - Professor

Joseph Emerson
MSc, PhD British Columbia - Associate Professor

Michael Fich
BSc Waterloo, MSc, PhD California - Professor

James Forrest
BSc Simon Fraser, MSc, PhD Guelph - Professor, Associate Dean of Research, Faculty of Science and University Research Chair

Michel Gingras
BSc, MSc Laval, PhD British Columbia - Professor and Canada Research Chair in Condensed Matter Theory & Statistical Mechanics

Bae-yeun Ha
BSc, MS Korea, PhD Maryland - Professor

David G. Hawthorn
BSc McMaster, PhD Toronto - Associate Professor

Thorsten Hesjedal
BSc Universitat Stuttgart, MSc Eberhard-Karls-Universitaet Tuebingen, PhD Humboldt Universität - Associate Professor

Robert Hill
BSc, PhD Bristol - Associate Professor and Associate Dean of Science, Graduate Studies

Michael Hudson
BSc Montreal, PhD Cambridge - Professor and Associate Dean of Science (Computing), Faculty of Science

Rajibul Islam
BSc Jadavpur University, MSc Tata Institute of Fundamental Research, PhD University of Maryland - Assistant Professor

Thomas Jennewein
Three letters of reference, two of which normally are from academic sources. Proof of competency in English (for applicants whose prior education was in a language other than English). See the University regulations on English Language Proficiency Certification.

Admission Requirements
Application for admission should be made as early as possible using on-line application methods described on the web-site https://uwaterloo.ca/waterloo-phys-physics-graduate-studies/student-resources/how-apply. Successful applicants are encouraged to start their graduate studies in May or September, but a January starting date is possible. Program offices should be consulted for admission deadlines. The admission requirements are as follows:

- An honours BSc degree in physics (or equivalent) with at least a B standing (75%) from a recognized university.
- Three letters of reference, two of which normally are from academic sources.
- Proof of competency in English (for applicants whose prior education was in a language other than English). See the University regulations on English Language Proficiency Certification.
- GRE Physics Subject Test score for all applicants who have completed their post-secondary education outside of Canada.

Successful applicants are encouraged to start their graduate studies in May or September, but a January starting date is possible. Academic transcripts and other supporting documents should be forwarded as soon as they become available. Admission to the program cannot be granted until all requirements have been met and all documents submitted.

Applications are considered by the Admissions Committee. It should be noted that students will normally be admitted only if an advisor can be found to oversee their research. Since there are a limited number of openings each year, applicants are advised to state alternative areas of research on the preference form supplied (see web-site http://gwp.on.ca/).
PhD Program
The PhD program is research-based and offered in the fields of: 1) astrophysics and gravitation; 2) atomic, molecular and optical physics; 3) biophysics; 4) chemical physics; 5) condensed matter and material physics; 6) industrial and applied physics; 7) subatomic physics; and 8) quantum computing.

Admission Requirements
A MSc degree in physics from an approved university or college with at least a B standing (75%) is normally required for entrance into the PhD program. Other requirements are the same as those described above for the MSc program (see web-site http://gwp.ontario.ca/).

Degree Requirements
Four one-term courses not including any already taken for MSc credit are required; courses taken during the MSc program and in excess of those required will, however, be allowed for PhD credit. The extra courses must be identified prior to admission. The core courses for the program are Quantum Mechanics 1 (PHYS*7010), Introduction to Quantum Field Theory (PHYS*7030), Statistical Physics 1 (PHYS*7040), Electromagnetic Theory (PHYS*7060), Introduction to Quantum Information Processing (PHYS*7670), and Fundamentals of Astrophysics (PHYS*7810). By the end of the first year of the program, three of the core courses, including one of Quantum Mechanics 1 (PHYS*7010), Statistical Physics 1 (PHYS*7040) and Electromagnetic Theory (PHYS*7060) or their equivalent should be completed. (Exception: Biophysics students must have taken at least one of Quantum Mechanics 1 (PHYS*7010), Statistical Physics 1 (PHYS*7040), and Electromagnetic Theory (PHYS*7060) by the completion of the first year of the PhD program.) One of the required courses may be an undergraduate course outside the student's main field of study and must be approved by the student's advisory committee and the Graduate Program Coordinator. No undergraduate course in physics may be taken for credit.

An average of at least 70% must be obtained in the required courses. A minimum grade of 65% is required for a pass in each course. No more than two courses, of the first four taken, can have a grade of less than 70%. If a student does not meet these minimum grade requirements, or receives a failing grade in any course, he/she may be required to withdraw from the program.

PhD candidates are required to pass a Qualifying Examination normally during the first year of the program; in any case, it must be passed no later than the fifth semester in which he/she is enrolled. This is an oral examination of approximately two hours' duration before a committee that includes representation from the student's advisory committee. It is designed to test the student's knowledge of the fundamentals and applications of physics closely related to the thesis topic. An assessment of the student's ability in research will be a factor in determining the examination result. If a student has not passed the Qualifying Examination by the end of the fifth semester in which they are enrolled, he/she may be required to withdraw from the program.

PhD students must meet their advisory committee members at least once a year to present a written and oral report on their progress. Candidates must present a thesis embodying the results of original research conducted by them on an advanced topic. The thesis is defended before a committee which may also examine the student's knowledge of related material.

Interdepartmental Programs
Biophysics Interdepartmental Group
The Department of Physics participates in the MSc/PhD programs in biophysics. Please consult the Biophysics listing for a detailed description of the graduate programs offered by the Biophysics Interdepartmental Group.

Courses
* Courses offered annually. Other courses are offered on an alternate year basis and as requested.

Perimeter Scholars' Institute Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Department(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS*6010</td>
<td>PSI Quantum Field Theory I</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6020</td>
<td>PSI Statistical Physics</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6030</td>
<td>PSI Quantum Field Theory II</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6040</td>
<td>PSI Relativity</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6050</td>
<td>PSI Quantum Theory</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6060</td>
<td>PSI Information and Data Analysis</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6070</td>
<td>PSI Dynamical Systems</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6080</td>
<td>PSI Computation</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6210</td>
<td>PSI Cosmology</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6220</td>
<td>PSI Standard Model</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6230</td>
<td>PSI String Theory</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6240</td>
<td>PSI Mathematical Physics</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6350</td>
<td>PSI Quantum Information Review</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6360</td>
<td>PSI Gravitational Physics Review</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6370</td>
<td>PSI Condensed Matter Theory</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6380</td>
<td>PSI Quantum Gravity</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6390</td>
<td>PSI Foundations of Quantum Theory</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*6410</td>
<td>PSI Explorations in Quantum Information</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
</tbody>
</table>

Degree Requirements
Special relativity, foundations of general relativity, Riemannian geometry, Einstein's equations, FRW and Schwarzschild geometries and their properties.

Probability, entropy, Bayesian inference and information theory. Maximum likelihood methods, common probability distributions, applications to real data including Monte Carlo methods.

Maps, flows, stability, fixed points, attractors, chaos, bifurcations, ergodicity, approach to chaos. Hamiltonian systems, Liouville, measure, Poincare theorem, integrable systems with examples.

FRW metric, Hubble expansion, dark energy, dark matter, CMB, Thermodynamic history of early universe. Growth of perturbations, CDM model of structure formation and comparison to observations, cosmic microwave background anisotropies, inflation and observational tests.

Common algorithms for ode and pde solving, with numerical analysis. Common tasks in linear algebra. Focus on how to write a good code, test it, and obtain a reliable result. Parallel programming.

FRW metic, Hubble expansion, dark energy, dark matter, CMB, Thermodynamic history of early universe. Growth of perturbations, CDM model of structure formation and comparison to observations, cosmic microwave background anisotropies, inflation and observational tests.

Parallel programing.

Superstring spectrum in 10d Minkowski, as well as simple toroidal and orbifold compactifications. T-duality, D-branes, tree amplitudes. Construct some simple unified models of particle physics. Motivate the 10-11-dimensional supergravities. Simple supergravity solutions and use these to explore some aspects of adS/CFT duality.

Differential forms, de Rham cohomology, differential topology and characteristic classes, monopoles and instantons, Kahler manifolds, Dirac equations, zero modes and index theorems.

Review of selected topics in Quantum Information.

Review of selected topics in Gravitational Physics.

Review of selected topics in Condensed Matter Theory.

Review of selected topics in Quantum Gravitity.

Review of selected topics in Foundations of Quantum Theory.

Review of selected topics in Quantum Information.
PHYS*6420 PSI Explorations in Gravitational Physics U [0.25]
Review of selected topics in Gravitational Physics.
Department(s): Department of Physics

PHYS*6430 PSI Exploration in Condensed Matter Theory U [0.25]
Review of selected topics in Condensed Matter Theory.
Department(s): Department of Physics

PHYS*6440 PSI Exploration in Quantum Gravity U [0.25]
Review of selected topics in Quantum Gravity.
Department(s): Department of Physics

PHYS*6450 PSI Explorations in Foundations of Quantum Theory U [0.25]
Review of selected topics in Foundations of Quantum Theory.
Department(s): Department of Physics

PHYS*6460 PSI Explorations in Particle Physics U [0.25]
Review of selected topics in Particle Physics.
Department(s): Department of Physics

PHYS*6470 PSI Explorations in String Theory U [0.25]
Review of selected topics in String Theory.
Department(s): Department of Physics

PHYS*6480 PSI Explorations in Complex Systems U [0.25]
Review of selected topics in Complex Systems.
Department(s): Department of Physics

PHYS*6490 PSI Explorations in Cosmology U [0.25]
Review of selected topics in Cosmology.
Department(s): Department of Physics

Basic Group

PHYS*7010 Quantum Mechanics I * U [0.50]
Department(s): Department of Physics

PHYS*7020 Quantum Mechanics II U [0.50]
Concepts of relativistic quantum mechanics, elementary quantum field theory, and Feynman diagrams. Application to many-particle systems.
Prerequisite(s): PHYS*7010 or equivalent
Department(s): Department of Physics

PHYS*7040 Statistical Physics I* U [0.50]
Statistical basis of thermodynamics; microcanonical, canonical and grand canonical ensembles; quantum statistical mechanics, theory of the density matrix; fluctuations, noise, irreversible thermodynamics; transport theory; application to gases, liquids, solids.
Department(s): Department of Physics

PHYS*7050 Statistical Physics II U [0.50]
Phase transitions. Fluctuation phenomena. Kubo's theory of time correlation functions for transport and spectral properties; applications selected from a variety of topics including linearized hydrodynamics of normal and superfluids, molecular liquids, liquid crystals, surface phenomena, theory of the dielectric constant, etc.
Prerequisite(s): PHYS*7040 or equivalent
Department(s): Department of Physics

PHYS*7060 Electromagnetic Theory * U [0.50]
Solutions to Maxwell's equations; radiation theory, normal modes; multipole expansion, Kirchoff's diffraction theory; radiating point charge; optical theorem. Special relativity; transformation laws for the electromagnetic field; line broadening. Dispersion; Kramers-Kronig relations. Magnetohydrodynamics and plasmas.
Department(s): Department of Physics

PHYS*7080 Applications of Group Theory U [0.50]
Introduction to group theory; symmetry, the group concept, representation theory, character theory. Applications to molecular vibrations, the solid state, quantum mechanics and crystal field theory.
Department(s): Department of Physics

PHYS*7070 Introduction to Quantum Information Processing F [0.50]
Department(s): Department of Physics

PHYS*7030 Quantum Field Theory U [0.50]
Prerequisite(s): PHYS*7010 or equivalent.
Department(s): Department of Physics

PHYS*7090 Green's Function Method U [0.50]
Department(s): Department of Physics

PHYS*7150 Nuclear Physics U [0.50]
Static properties of nuclei; alpha, beta, gamma decay; two-body systems; nuclear forces; nuclear reactions; single-particle models for spherical and deformed nuclei; shell, collective, interacting boson models.
Department(s): Department of Physics

PHYS*7160 Special Topics in Subatomic and Nuclear Physics U [0.50]
Restriction(s): Instructor consent required.
Department(s): Department of Physics

PHYS*7170 Intermediate and High Energy Physics U [0.50]
Strong, electromagnetic and weak interactions. Isospin, strangeness, conservation laws and symmetry principles. Leptons, hadrons, quarks and their classification, formation, interactions and decay.
Department(s): Department of Physics

PHYS*7180 Special Topics in Subatomic and Nuclear Physics U [0.50]
Restriction(s): Instructor consent required.
Department(s): Department of Physics

Astronomy and Astrophysics

PHYS*7810 Fundamentals of Astrophysics U [0.50]
The fundamental astronomical data: techniques to obtain it and the shortcomings present. The classification systems. Wide- and narrow-band photometric systems. The intrinsic properties of stars: colours, luminosities, masses, radii, temperatures. Variable stars. Distance indicators. Interstellar reddening. Related topics.
Department(s): Department of Physics

PHYS*7840 Advanced General Relativity W [0.50]
Department(s): Department of Physics

PHYS*7850 Quantum Field Theory for Cosmology U [0.50]
Introduction to scalar field theory and its canonical quantization in flat and curved spacetimes. The flat space effects of Casimir and Unruh. Quantum fluctuations of scalar fields and of the metric on curved space-times and application to inflationary cosmology. Hawking radiation.
Prerequisite(s): PHYS*7010
Department(s): Department of Physics

PHYS*7860 General Relativity for Cosmology U [0.50]
Department(s): Department of Physics

PHYS*7870 Cosmology U [0.50]
Friedmann-Robertson-Walker metric and dynamics; big bang thermodynamics; nucleosynthesis; recombination; perturbation theory and structure formation; anisotropies in the Cosmic Microwave Background; statistics of cosmological density and velocity fields; galaxy formation; inflation.
Department(s): Department of Physics

PHYS*7880 Special Topics in Astronomy U [0.50]
Offered on demand
Department(s): Department of Physics

Subatomic and Nuclear

PHYS*7030 Quantum Field Theory U [0.50]
Prerequisite(s): PHYS*7010 or equivalent.
Department(s): Department of Physics

PHYS*7090 Green's Function Method U [0.50]
Department(s): Department of Physics

PHYS*7150 Nuclear Physics U [0.50]
Static properties of nuclei; alpha, beta, gamma decay; two-body systems; nuclear forces; nuclear reactions; single-particle models for spherical and deformed nuclei; shell, collective, interacting boson models.
Department(s): Department of Physics

PHYS*7160 Special Topics in Subatomic and Nuclear Physics U [0.50]
Restriction(s): Instructor consent required.
Department(s): Department of Physics

PHYS*7170 Intermediate and High Energy Physics U [0.50]
Strong, electromagnetic and weak interactions. Isospin, strangeness, conservation laws and symmetry principles. Leptons, hadrons, quarks and their classification, formation, interactions and decay.
Department(s): Department of Physics

PHYS*7180 Special Topics in Subatomic and Nuclear Physics U [0.50]
Restriction(s): Instructor consent required.
Department(s): Department of Physics

Astronomy and Astrophysics

PHYS*7810 Fundamentals of Astrophysics U [0.50]
The fundamental astronomical data: techniques to obtain it and the shortcomings present. The classification systems. Wide- and narrow-band photometric systems. The intrinsic properties of stars: colours, luminosities, masses, radii, temperatures. Variable stars. Distance indicators. Interstellar reddening. Related topics.
Department(s): Department of Physics

PHYS*7840 Advanced General Relativity W [0.50]
Department(s): Department of Physics

PHYS*7850 Quantum Field Theory for Cosmology U [0.50]
Introduction to scalar field theory and its canonical quantization in flat and curved spacetimes. The flat space effects of Casimir and Unruh. Quantum fluctuations of scalar fields and of the metric on curved space-times and application to inflationary cosmology. Hawking radiation.
Prerequisite(s): PHYS*7010
Department(s): Department of Physics

PHYS*7860 General Relativity for Cosmology U [0.50]
Department(s): Department of Physics

PHYS*7870 Cosmology U [0.50]
Friedmann-Robertson-Walker metric and dynamics; big bang thermodynamics; nucleosynthesis; recombination; perturbation theory and structure formation; anisotropies in the Cosmic Microwave Background; statistics of cosmological density and velocity fields; galaxy formation; inflation.
Department(s): Department of Physics

PHYS*7880 Special Topics in Astronomy U [0.50]
Offered on demand
Department(s): Department of Physics
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Department(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS*7890</td>
<td>Special Topics in Astrophysics</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7900</td>
<td>Special Topics in Gravitation and Cosmology</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7910</td>
<td>Special Topics in Gravitation and Cosmology</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7130</td>
<td>Molecular Physics</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7140</td>
<td>Nonlinear Optics</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7520</td>
<td>Molecular Biophysics</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7540</td>
<td>Special Topics in Biophysics</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7570</td>
<td>Special Topics in Biophysics</td>
<td>0.25</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7450</td>
<td>Special Topics in Experimental Physics *</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7470</td>
<td>Optical Electronics</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7710</td>
<td>Special Lecture and Reading Course</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7730</td>
<td>Special Topics in Physics</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7750</td>
<td>Interinstitution Exchange</td>
<td>0.50</td>
<td>Department of Physics</td>
</tr>
<tr>
<td>PHYS*7770</td>
<td>MSc Project</td>
<td>1.00</td>
<td>Department of Physics</td>
</tr>
</tbody>
</table>

Atomic and Molecular

PHYS*7100 Atomic Physics

Emphasis on atomic structure and spectroscopy. Review of angular momentum, rotations, Wigner-Eckart theorem, n-j symbols. Energy levels in complex atoms. Hartree-Fock theory, radiative-transitions and inner-shell processes. Further topics selected with class interest in mind, at least one of which is to be taken from current literature.

PHYS*7310 Solid State Physics I

Phonons, electron states, electron-electron interaction, electron-ion interaction, static properties of solids.

PHYS*7320 Solid State Physics II

Transport properties: optical properties; magnetism; superconductivity; disordered systems.

PHYS*7330 Special Topics in Theoretical Condensed Matter Physics

PHYS*7370 Special Topics in Surface Physics

Condensed Matter

PHYS*7510 Clinical Applications of Physics in Medicine

This course provides an overview of the application of physics to medicine. The physical concepts underlying the diagnosis and treatment of disease will be explored. Topics will include general imaging principles such as resolution, intensity, and contrast; x-ray imaging and computed tomography; radioisotopes and nuclear medicine, SPECT and PET; magnetic resonance imaging; ultrasound imaging and radiation therapy. Credit may be obtained for only one of PHYS*4070 or PHYS*7510.

PHYS*7520 Molecular Biophysics

Physical methods of determining macromolecular structure: energetics, intramolecular and intermolecular forces, with application to lamellar structures, information storage, DNA and RNA, recognition and rejection of foreign molecules. Offered in conjunction with PHYS*4540. Elective work is required of graduate students.

PHYS*7540 Special Topics in Biophysics

Offered on demand

PHYS*7570 Special Topics in Biophysics

Offered on demand

Biophysics

PHYS*7450 Special Topics in Experimental Physics *

A modular course in which each module deals with an established technique of experimental physics. Four modules will be offered during the Winter and Spring semesters, but registration and credit will be in the Spring semester. Typical topics are neutron diffraction, light scattering, acoustics, molecular beams, NMR, surface analysis, etc.

PHYS*7470 Optical Electronics

Optoelectronic component fabrication, light propagation in linear and nonlinear media, optical fiber properties, electro-optic and acousto-optic modulation, spontaneous and stimulated emission, semiconductor lasers and detectors, noise effects in fiber systems.

Special Courses (offered on demand only)

PHYS*7120 Special Topics in Theoretical Physics

PHYS*7710 Special Lecture and Reading Course

PHYS*7730 Special Topics in Physics

PHYS*7750 Interinstitution Exchange

At the GWPI director's discretion, a PhD or MSc student may receive credit for a term of specialized studies at another institution. Formal evaluation is required.

PHYS*7970 MSc Project

Study of a selected topic in physics presented in the form of a written report. For students whose MSc program consists entirely of courses.

Applied Physics (including Technical Methods)

PHYS*7440 Nonlinear Optics

Classical and Quantum Mechanical descriptions of nonlinear susceptibility, nonlinear wave propagation, nonlinear effects such as Peckel's and Kerr effects, harmonic generation, phase conjugation and stimulated scattering processes.