The information published in this Graduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2020-2021 academic year, including the Summer Semester 2020, Fall Semester 2020 and the Winter Semester 2021.

For your convenience the Graduate Calendar is available in PDF format.

If you wish to link to the Graduate Calendar please refer to the Linking Guidelines.

The University is a full member of:

- Universities of Canada

Contact Information:

University of Guelph
Guelph, Ontario, Canada
N1G 2W1
520-824-4121

Revision Information:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 25, 2020</td>
<td>Initial Publication</td>
</tr>
<tr>
<td>June 3, 2020</td>
<td>Revision 1</td>
</tr>
</tbody>
</table>
**Disclaimer**

The information published in this Graduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2020-2021 academic year, including the Summer Semester 2020, the Fall Semester 2020 and the Winter Semester 2021.

The University reserves the right to change without notice any information contained in this calendar, including but not limited to that related to tuition and other fees, standards of admission, course delivery or format, continuation of study, and the offering or requirements for the granting of, degrees or diplomas in any or all of its programs. The publication of this calendar does not bind the University to the provision of courses, programs, schedules of study, or facilities as listed herein.

The University will not be liable for any failure or delay in performance arising out of any cause or causes beyond its reasonable control. Such causes may include but are not limited to fire, strike, lock-out, inability to procure materials or trades, war, mass-casualty event, flood, local, regional or global outbreak of disease or other public health emergency, social distancing or quarantine restriction, legislative or regulatory requirements, unusually severe weather, failure of public utility or common carrier, or attacks or other malicious act, including but not limited to attacks on or through the internet, or any internet service, telecommunications provider or hosting facility.

In March 2020 the World Health Organization declared a global pandemic of the virus leading to COVID-19. The Governments of Canada, the Province of Ontario, and local Governments responded to the pandemic with legislative amendments, controls, orders, by-laws, requests and requirements (collectively, the “Governmental Response”). It is uncertain how long the pandemic, and the related Governmental Response, will continue, and it is unknown whether there may be a resurgence of the virus leading to COVID-19 or any mutation thereof (collectively, the “Virus”) and resulting or supplementary renewed Government Response. Without limiting the foregoing paragraph, the University shall not be liable for costs associated with any failure or delay in performance arising out of:

a. the continued spread of the Virus;
b. the continuation of or renewed Governmental Response to control the spread of the Virus; and
c. a University decision, made on an organization-wide basis and in good faith, to control the spread of the Virus, even if exceeding the then current specific Government Response.

In particular, the COVID-19 pandemic may necessitate a revision of the format of course offerings such that courses are offered in whole or in part on an alternate delivery model to in-person classes. Tuition and mandatory fees have been set regardless of the method of instruction and will not be refunded in the event instruction occurs remotely for any part of the academic year.

Dates or times of performance including the Schedule of Dates may be extended as appropriate and the University will notify students promptly of the existence and nature of such delay and shall, so far as practicable, use reasonable efforts to minimize and mitigate any such delay or non-performance.

In the event of a discrepancy between a print version (downloaded) and the Web version, the Web version will apply.

The University of Guelph reaffirms section 1 of the Ontario Human Rights Code, 1981, which prohibits discrimination on the grounds of race, ancestry, place of origin, colour, ethnic origin, citizenship, creed, sex, sexual orientation, handicap, age, marital status or family status.

The university encourages applications from women, aboriginal peoples, visible minorities, persons with disabilities, and members of other under-represented groups.
**Introduction**

**Collection, Use and Disclosure of Personal Information**

Personal information is collected under the authority of the University of Guelph Act (1964), and in accordance with Ontario’s Freedom of Information and Protection of Privacy Act (FIPPA) [http://www.e-laws.gov.on.ca/DBLaws/Statutes/English/90f31_e.htm](http://www.e-laws.gov.on.ca/DBLaws/Statutes/English/90f31_e.htm). This information is used by University officials in order to carry out their authorized academic and administrative responsibilities and also to establish a relationship for alumni and development purposes. Certain personal information is disclosed to external agencies, including the Ontario Universities Application Centre, the Ministry of Advanced Education and Skills Development, and Statistics Canada, for statistical and planning purposes, and is disclosed to other individuals or organizations in accordance with the Office of Registrarial Services Departmental Policy on the Release of Student Information. For details on the use and disclosure of this information call the Office of Registrarial Services at the University at (519) 824-4120 or see [https://www.uoguelph.ca/registrar](https://www.uoguelph.ca/registrar).

**Statistics Canada - Notification of Disclosure**

For further information, please see Statistics Canada's website at [http://www.statcan.gc.ca](http://www.statcan.gc.ca) and Section XIV Statistics Canada.

**Address for University Communication**

Depending on the nature and timing of the communication, the University may use one of these addresses to communicate with students. Students are, therefore, responsible for checking all of the following on a regular basis:

**Email Address**

The University issued email address is considered an official means of communication with the student and will be used for correspondence from the University. Students are responsible for monitoring their University-issued email account regularly.

**Home Address**

Students are responsible for maintaining a current mailing address with the University. Address changes can be made, in writing, through Registrarial Services.

**Name Changes**

The University of Guelph is committed to the integrity of its student records, therefore, each student is required to provide either on application for admission or on personal data forms required for registration, their complete, legal name. Any requests to change a name, by means of alteration, deletion, substitution or addition, must be accompanied by appropriate supporting documentation.

**Student Confidentiality and Release of Student Information Policy Excerpt**

The University undertakes to protect the privacy of each student and the confidentiality of their record. To this end the University shall refuse to disclose personal information to any person other than the individual to whom the information relates where disclosure would constitute an unjustified invasion of the personal privacy of that person or of any other individual. All members of the University community must respect the confidential nature of the student information which they acquire in the course of their work.

Complete policy at [https://www.uoguelph.ca/secretariat/office-services/university-secretariat/university-policies](https://www.uoguelph.ca/secretariat/office-services/university-secretariat/university-policies).
Graduate Degree Learning Outcomes

On May 27, 2013, the University of Guelph Senate approved the following five University-wide Learning Outcomes as the basis from which to guide the development of graduate degree programs, specializations and courses:

1. Critical and Creative Thinking
2. Literacy
3. Global Understanding
4. Communication
5. Professional and Ethical Behaviour

These learning outcomes are also intended to serve as a framework through which our educational expectations are clear to students and the broader public; and to inform the process of outcomes assessment through the quality assurance process (regular reviews) of programs and departments.

An on-line guide to the learning outcomes, links to the associated skills, and detailed rubrics designed to support the development and assessment of additional program and discipline-specific outcomes, are available for reference on the Learning Outcomes website.

Critical and Creative Thinking

Critical and creative thinking is a concept in which one applies logical principles, after much inquiry and analysis, to solve problems with a high degree of innovation, divergent thinking and risk taking. Those mastering this outcome show evidence of integrating knowledge and applying this knowledge across disciplinary boundaries. Depth and breadth of understanding of disciplines is essential to this outcome. At the graduate level, originality in the application of knowledge (master’s) and undertaking of research (doctoral) is expected. In addition, Critical and Creative Thinking includes, but is not limited to, the following outcomes: Independent Inquiry and Analysis; Problem Solving; Creativity; and Depth and Breadth of Understanding.

Literacy

Literacy is the ability to extract information from a variety of resources, assess the quality and validity of the material, and use it to discover new knowledge. The comfort in using quantitative literacy also exists in this definition, as does using technology effectively and developing visual literacy.

In addition, Literacy includes, but is not limited to, the following outcomes: Information Literacy, Quantitative Literacy, Technological Literacy, and Visual Literacy.

Global Understanding

Global understanding encompasses the knowledge of cultural similarities and differences, the context (historical, geographical, political and environmental) from which these arise, and how they are manifest in modern society. Global understanding is exercised as civic engagement, intercultural competence and the ability to understand an academic discipline outside of the domestic context.

In addition, Global Understanding includes, but is not limited to, the following outcomes: Global Understanding, Sense of Historical Development, Civic Knowledge and Engagement, and Intercultural Competence.

Communication

Communication is the ability to interact effectively with a variety of individuals and groups, and convey information successfully in a variety of formats including oral and written communication. Communication also comprises attentiveness and listening, as well as reading comprehension. It includes the ability to communicate and synthesize information, arguments, and analyses accurately and reliably.

In addition, Communication includes, but is not limited to, the following outcomes: Oral Communication, Written Communication, Reading Comprehension, and Integrative Communication.

Professional and Ethical Behaviour

Professional and ethical behaviour requires the ability to accomplish the tasks at hand with proficient skills in teamwork and leadership, while remembering ethical reasoning behind all decisions. The ability for organizational and time management skills is essential in bringing together all aspects of managing self and others. Academic integrity is central to mastery in this outcome. At the graduate level, intellectual independence is needed for professional and academic development and engagement.

In addition, Professional and Ethical Behaviour includes, but is not limited to, the following outcomes: Teamwork, Ethical Reasoning, Leadership, Personal Organization and Time Management, and Intellectual Independence.
## Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>143</td>
</tr>
<tr>
<td>Administrative Staff</td>
<td>143</td>
</tr>
<tr>
<td>Graduate Faculty</td>
<td>143</td>
</tr>
<tr>
<td>Associated Graduate Faculty</td>
<td>143</td>
</tr>
<tr>
<td>Graduate Faculty from the University of Waterloo</td>
<td>143</td>
</tr>
<tr>
<td>MSc Program</td>
<td>144</td>
</tr>
<tr>
<td>PhD Program</td>
<td>144</td>
</tr>
<tr>
<td>Interdepartmental Programs</td>
<td>145</td>
</tr>
<tr>
<td>Courses</td>
<td>145</td>
</tr>
</tbody>
</table>
Physics

The Departments of Physics at the Universities of Guelph and Waterloo offer MSc and PhD degrees in the following fields:
- Astrophysics and Gravitation
- Atomic, Molecular and Optical Physics
- Biophysics
- Chemical Physics
- Condensed Matter and Material Physics
- Industrial and Applied Physics
- Subatomic Physics
- Quantum Computing

The University of Guelph and the University of Waterloo have a joint program in which graduate courses are taught by instructors from both universities. Students are registered at the university their advisor is located. A student comes under the general regulations of the university at which he or she is registered, and the degree is granted by that university.

Administrative Staff

Chair
Paul Garrett (220 MacNaughton, Ext. 53991) phychair@uoguelph.ca

Graduate Program Coordinator
Eric Poisson (452 MacNaughton, Ext. 53653) epoisson@uoguelph.ca

Associate Graduate Program Coordinator
Xiaorong Qin (449 MacNaughton, Ext. 53675) xqin@uoguelph.ca

Graduate Program Assistant
Janice Illic (207 MacNaughton, Ext. 58176) physgrad@uoguelph.ca

Graduate Faculty

Leonid S. Brown
MSc, PhD Moscow State - Professor

Liliana Caballero
BSc Columbia, PhD Indiana - Assistant Professor

John R. Dutcher
BSc Dalhousie, MSc British Columbia, PhD Simon Fraser - Professor and Canada Research Chair in Soft Matter & Biological Physics and Director Nanoscience

Paul E. Garrett
BSc Queen’s, MSc, PhD McMaster - Professor, Chair

Ralf Gellert
Dipl Phys, PhD Darmstadt - Associate Professor

Alexandros Gezerlis
Dipl National Technical University Athens, PhD Urbana-Champaign - Associate Professor

De-Tong Jiang
BSc Jilin, PhD Simon Fraser - Associate Professor

Stefan W. Kycia
BSc McGill; MS Pennsylvania; PhD Iowa - Associate Professor

Vladimir Ladizhansky
BS Moscow Institute of Physics and Technology; MS, PhD Weizmann Institute of Science (Rehovot, Israel) - Professor

Michael Massa
BSc Guelph, MSc, PhD McMaster - Assistant Professor

Dennis Mürcher
BSc University of Cologne, Germany, PhD University of Cologne, Germany - Assistant Professor

Elisabeth J. Nicol
BSc Mount Allison, MSc, PhD McMaster - Professor

Joanne M. O’Meara
BSc, PhD McMaster - Professor

Eric Poisson
BSc Dalhousie, MSc PhD Alberta - Professor and Graduate Program Coordinator

Xiao-Rong Qin
BSc, MSc Tsinghua (Beijing), PhD Simon Fraser - Associate Professor

Daniel Siegel
Dipl University of Freiburg, PhD Max Plank Institute - Assistant Professor

Carl E. Svensson
BSc, PhD McMaster - Professor

Robert Wickham
BSc Toronto, PhD Chicago - Associate Professor

Martin Williams
PhD Imperial College, London - Associate Professor and Undergraduate Coordinator/Academic Counsellor, and Associate Chair (Undergraduate)

Huan Yang
BSc California Institute of Technology, PhD California Institute of Technology - Assistant Professor

Associated Graduate Faculty

J.L. (Iain) Campbell
BSc, PhD, DSc Glasgow, DTech Lund - University Professor Emeritus, Physics, University of Guelph

James H. Davis
BSc, BA Moorhead, PhD Manitoba - Professor Emeritus, Physics University of Guelph

Graduate Faculty from the University of Waterloo

Nasser Abukhdeer
BSc Carnegie Mellon, MCE Carnegie Mellon, PhD McGill University - Associate Professor

Niayesh Afshordi
BA Iran, BSc Providence, PhD Princeton - Associate Professor

Michal Bajersy
BS Harvard, PhD Harvard - Assistant Professor

Michael Balogh
BSc McMaster, PhD Victoria - Professor and Associate Chair of Department of Physics and Astronomy

Daryan Ban
BSc, MSc University of Science and Technology China, PhD University of Toronto - Professor

Jonathan Baugh
BS Tennessee, PhD North Carolina - Associate Professor

Kostadinka Bizheva
BS, MS Plovdiv, MS, PhD Tufts - Associate Professor

Avery Broderick
BS Stoney Brook, PhD CalTech - Associate Professor

Raffi Budakian
BS UCLA, MS UCLA, PhD UCLA - Professor

Anton Burkov
BS, MS Plovdiv, MS, PhD Tufts - Associate Professor and Associate Graduate Officer

Melanie C. Campbell
BSc Toronto, MSc Waterloo, PhD Australian National, FAAO - Professor and Director Graduate Studies in Physics, University of Waterloo, University of Guelph

Z.Y. ‘Jeff' Chen
BSc Fudan, PhD Maryland - Professor and University Research Chair

Kyoung Soo Choi
BSc Stony Brook University, PhD CalTech - Assistant Professor

David Cory
BA, PhD Case Western Reserve - Professor

Joseph Emerson
MSc, PhD British Columbia - Associate Professor

Michael Fich
BSc Waterloo, MSc, PhD California - Professor

James Forrest
BSc Simon Fraser, MSc, PhD Guelph - Professor, Faculty of Science and University Research Chair

Michel Gingras
BSc, MSc Laval, PhD British Columbia - Professor and Canada Research Chair in Condensed Matter Theory & Statistical Mechanics

Bae-Young Ha
BSc, MS Korea, PhD Maryland - Professor

David G. Hawthorn
BSc McMaster, PhD Toronto - Associate Professor

Thorsten Hesjedal
BSc Universität Stuttgart, MSc Eberhard-Karls-Universität Tübingen, PhD Humboldt Universität - Associate Professor

Robert Hill
BSc, PhD Bristol - Associate Professor and Associate Dean of Science, Graduate Studies

Michael Hudson
BSc Montreal, PhD Cambridge - Professor

Rajibul Islam
BSc Jadavpur University, MSc Tata Institute of Fundamental Research, PhD University of Maryland - Assistant Professor

Thomas Jennewein
MSc Innsbruck, PhD Vienna - Associate Professor

January 28, 2020
Admission Requirements
Application for admission should be made as early as possible using on-line application methods described on the web-site https://www.physics.uoguelph.ca/graduate-studies/graduate-studies-in-physics/how-to-apply. Successful applicants are encouraged to start their graduate studies in May or September, but a January starting date is possible. Program offices should be consulted for admission deadlines.

The admission requirements are as follows:

- An honours BSc degree in physics (or equivalent) with at least a B standing (75%) from a recognized university.
- Three letters of reference, two of which normally are from academic sources.
- Proof of competency in English (for applicants whose prior education was in a language other than English). See the University regulations on English Language Proficiency Certification.
- GRE Physics Subject Test score for all applicants who have completed their post-secondary education outside of Canada.

Successful applicants are encouraged to start their graduate studies in May or September, but a January starting date is possible. Academic transcripts and other supporting documents should be forwarded as soon as they become available. Admission to the program cannot be granted until all requirements have been met and all documents submitted.

Applications are considered by the Admissions Committee. It should be noted that students will normally be admitted only if an advisor can be found to oversee their research. Since there are a limited number of openings each year, applicants are advised to state alternative areas of research on the preference form supplied (see web-site https://www.physics.uoguelph.ca/graduate-studies/graduate-studies-in-physics/how-to-apply).

Program Requirements

Students enrol in one of two study options: 1) thesis, or 2) course work and major research project.

Thesis
Four one-term courses (at least 2.0 course credits) acceptable for graduate credit and a thesis based on original research are required. The subject of research must be approved by the candidate’s advisory committee and the thesis must be read and approved by the advisory committee. One of the four courses may be an undergraduate course approved by the student’s advisory committee. The subject of research must be approved by the coordinating committee, to transfer into the PhD program without completing an MSc thesis.

An average of at least 70% must be obtained in the required courses. A minimum grade of 55% is required for a pass in each course. No more than two courses of the first four taken, can have a grade of less than 70%. If a student does not meet these minimum grade requirements, or receives a failing grade in any course, they may be required to withdraw from the program.

Course Work and Major Research Project (MRP)

Eight one-term courses (0.50 unit weight) acceptable for graduate credit, including a course work, are required. The project must be approved by the candidate's advisor and the Graduate Program Coordinator. If it is a physics course, it must be at the fourth-year level. If it is a physics course, it must be at the fourth-year level.

For all students one of the courses must include at least one of Quantum Mechanics 1 (PHYS*7010), Introduction to Quantum Field Theory (PHYS*7030), Statistical Physics 1 (PHYS*7040), Electromagnetic Theory (PHYS*7060), and Fundamentals of Astrophysics (PHYS*7810). An MSc student in this program who shows a particular aptitude for research and has a superior record in fourth-year undergraduate and three one-term graduate courses may be permitted, upon recommendation of the advisor and with the approval of the coordinating committee, to transfer into the PhD program without completing an MSc thesis.

An average of at least 70% must be obtained in the required courses. A minimum grade of 65% is required for a pass in each course. No more than two courses of the first four taken, can have a grade of less than 70%. If a student does not meet these minimum grade requirements, or receives a failing grade in any course, they may be required to withdraw from the program.

PhD Program

The PhD program is research-based and offered in the fields of: 1) astrophysics and gravitation; 2) atomic, molecular and optical physics; 3) biophysics; 4) chemical physics; 5) condensed matter and material physics; 6) industrial and applied physics; 7) subatomic physics; and 8) quantum computing.
Admission Requirements

There are three pathways for admission to the PhD program:
1. An MSc degree in physics from an approved university or college with at least a B standing (75%) is normally required for entrance into the PhD program. Other requirements are the same as those described above for the MSc program (see web-site https://www.physics.uoguelph.ca/graduate-studies/graduate-studies-in-physics/how-to-apply).
2. Students with an undergraduate degree in Physics may apply for admission directly to the PhD program. Successful applicants will have an outstanding academic record, breadth of knowledge in physics, previous research experience, and strong letters of recommendation.
3. Students wishing to be considered for transfer to a PhD program prior to completion of the MSc program must request the transfer up to 3 full-time terms after initial registration and have an excellent academic record as well as a strong aptitude for research.

Program Requirements

Three core courses or their equivalent must be completed by end of the first year of the PhD program. This requirement may be satisfied, in full or in part, by courses taken during the M.Sc. The core courses for the program are Quantum Mechanics 1 PHYS*7010, Introduction to Quantum Field Theory PHYS*7030, Statistical Physics 1 PHYS*7040, Electromagnetic Theory PHYS*7060, Introduction to Quantum Information Processing PHYS*7670, and Fundamentals of Astrophysics PHYS*7810. One of the core courses must include Quantum Mechanics 1 PHYS*7010, Statistical Physics 1 PHYS*7040, or Electromagnetic Theory PHYS*7060. Exception: Biophysics students within the Physics PhD program are required to take only one core course by the completion of the first year of the program, which must include one of Quantum Mechanics 1 PHYS*7010, Statistical Physics 1 PHYS*7040, or Electromagnetic Theory PHYS*7060. A minimum of two one-term courses are required to be taken for the PhD degree, which may include or be in addition to the core courses required as specified above. One of the required courses may be an undergraduate course outside the student’s main field of study and must be approved by the student’s advisory committee and the Graduate Program Coordinator. No undergraduate course in physics may be taken for credit. No courses taken for MSc credit may be used to satisfy the minimum course requirement. However, courses taken during the MSc program and in excess of those required for the MSc program will be allowed for PhD credit. The extra courses must be identified prior to admission to the PhD program.

An average of at least 70% must be obtained in the required courses. A minimum grade of 65% is required for a pass in each course. No more than two courses, of the first four taken, can have a grade of less than 70%. If a student does not meet these minimum grade requirements, or receives a failing grade in any course, they may be required to withdraw from the program.

Students who transfer to the PhD, or who enter the PhD directly, will need to complete the course work requirements of both the MSc and PhD degrees, a total of six one-term graduate courses. Three of the core courses including one of Physics 7010, Physics 7040 or Physics 7060 will have been taken by the end of the first year of the PhD program.

Interdepartmental Programs

Biophysics Interdepartmental Group

The Department of Physics participates in the MSc/PhD programs in biophysics. Please consult the Biophysics listing for a detailed description of the graduate programs offered by the Biophysics Interdepartmental Group.

Courses

Unless offering indicated below, courses are offered on an alternate year basis and as requested.

Perimeter Scholars’ Institute Courses

PHYS*6040 PSI Relativity U [0.50]
Special relativity, foundations of general relativity, Riemannian geometry, Einstein's equations, FRW and Schwarzschild geometries and their properties.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6050 PSI Quantum Theory U [0.50]
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6060 PSI Information and Data Analysis U [0.50]
Probability, entropy, Bayesian inference and information theory. Maximum likelihood methods, common probability distributions, applications to real data including Monte Carlo methods.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6070 PSI Dynamical Systems U [0.50]
Maps, flows, stability, fixed points, attractors, chaos, bifurcations, ergodicity, approach to chaos. Hamiltonian systems, Liouville, measure, Poincare theorem, integral systems with examples.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6080 PSI Computation U [0.50]
Common algorithms for ode and pde solving, with numerical analysis. Common tasks in linear algebra. Focus on how to write a good code, test it, and obtain a reliable result.
Parallel programming.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6210 PSI Cosmology U [0.25]
FRW metric, Hubble expansion, dark energy, dark matter. CMB, Thermodynamic history of early universe. Growth of perturbations, CDM model of structure formation and comparison to observations, cosmic microwave background anisotropies, inlation and observational tests.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6220 PSI Standard Model U [0.25]
Application of Yan-Mills theory to particle physics, QCD and its tests in the perturbative regime, theory of weak interactions, precisions tests of electroweak theory, CKM matrix and flavour physics, open questions.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6230 PSI String Theory U [0.25]
Superstring spectrum in 10d Minkowski, as well as simple toroidal and orbifold compactifications. T-duality, D-branes, tree amplitudes. Construct some simple unified models of particle physics. Motivate the 10- 11-dimensional supergravities. Simple supergravity solutions and use these to explore some aspects of AdS/CFT duality.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6240 PSI Mathematical Physics Topics U [0.25]
Differential forms, de Rham cohomology, differential topology and characteristic classes, monopoles and instantons, Kahler manifolds, Dirac equations, zero modes and index theorems.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6350 PSI Quantum Information Review U [0.25]
Review of selected topics in Quantum Information.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6360 PSI Gravitational Physics Review U [0.25]
Review of selected topics in Gravitational Physics.
Department(s): Department of Physics
Location(s): Waterloo

PHYS*6370 PSI Condensed Matter Theory U [0.25]
Review of selected topics in Condensed Matter Theory.
Department(s): Department of Physics
Location(s): Waterloo
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Approvals</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS*6380</td>
<td>PSI Quantum Gravity U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Quantum Gravity.</td>
</tr>
<tr>
<td>PHYS*6390</td>
<td>PSI Foundations of Quantum Theory U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Foundations of Quantum Theory.</td>
</tr>
<tr>
<td>PHYS*6410</td>
<td>PSI Explorations in Quantum Information U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Quantum Information.</td>
</tr>
<tr>
<td>PHYS*6420</td>
<td>PSI Explorations in Gravitational Physics U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Gravitational Physics.</td>
</tr>
<tr>
<td>PHYS*6430</td>
<td>PSI Explorations in Condensed Matter Theory U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Condensed Matter Theory.</td>
</tr>
<tr>
<td>PHYS*6440</td>
<td>PSI Explorations in Quantum Gravity U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Quantum Gravity.</td>
</tr>
<tr>
<td>PHYS*6450</td>
<td>PSI Explorations in Foundations of Quantum Theory U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Foundations of Quantum Theory.</td>
</tr>
<tr>
<td>PHYS*6460</td>
<td>PSI Explorations in Particle Physics U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Particle Physics.</td>
</tr>
<tr>
<td>PHYS*6470</td>
<td>PSI Explorations in String Theory U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in String Theory.</td>
</tr>
<tr>
<td>PHYS*6480</td>
<td>PSI Explorations in Complex Systems U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Complex Systems.</td>
</tr>
<tr>
<td>PHYS*6490</td>
<td>PSI Explorations in Cosmology U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td>Review of selected topics in Cosmology.</td>
</tr>
</tbody>
</table>

**Basic Group**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Approvals</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS*7010</td>
<td>Quantum Mechanics I U [0.50]</td>
<td>Department(s): Department of Physics</td>
<td>Review of formalism of nonrelativistic quantum mechanics including symmetries and invariance. Approximation methods and scattering theory. Elementary quantum theory of radiation. Introduction to one-particle relativistic wave equations.</td>
</tr>
<tr>
<td>PHYS*7020</td>
<td>Quantum Mechanics II U [0.50]</td>
<td>Department(s): Department of Physics</td>
<td>Concepts of relativistic quantum mechanics, elementary quantum field theory, and Feynman diagrams. Application to many-particle systems.</td>
</tr>
<tr>
<td>PHYS*7040</td>
<td>Statistical Physics I U [0.50]</td>
<td>Department(s): Department of Physics</td>
<td>Statistical basis of thermodynamics; microcanonical, canonical and grand canonical ensembles; quantum statistical mechanics, theory of the density matrix; fluctuations, noise, irreversible thermodynamics; transport theory; application to gases, liquids, solids.</td>
</tr>
</tbody>
</table>

**Department(s):** Department of Physics

**Offering(s):** Annually

**Restriction(s):** Instructor consent required.

**Prerequisite(s):** PHYS*7010

**Department(s):** Department of Physics

**Offering(s):** Annually

**Restriction(s):** Instructor consent required.

**Prerequisite(s):** PHYS*7040

**Department(s):** Department of Physics

**Offering(s):** Annually

**Prerequisite(s):** PHYS*7010

**Department(s):** Department of Physics

**Offering(s):** Annually

**Prerequisite(s):** PHYS*7040

**Department(s):** Department of Physics

**Offering(s):** Annually

**Prerequisite(s):** PHYS*7010

**Department(s):** Department of Physics

**Offering(s):** Annually

**Prerequisite(s):** PHYS*7040

**Department(s):** Department of Physics

**Offering(s):** Annually

**Prerequisite(s):** PHYS*7010

**Department(s):** Department of Physics

**Offering(s):** Annually

**Prerequisite(s):** PHYS*7040

**Department(s):** Department of Physics

**Offering(s):** Annually

**Prerequisite(s):** PHYS*7010

**Department(s):** Department of Physics

**Offering(s):** Annually

**Prerequisite(s):** PHYS*7040

**Department(s):** Department of Physics
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS*7850</td>
<td>Quantum Field Theory for Cosmology U [0.50]</td>
<td>Introduces scalar field theory and its canonical quantization in flat and curved spacetimes. The flat space effects of Casimir and Unruh. Quantum fluctuations of scalar fields and of the metric on curved space-times and application to inflationary cosmology. Hawking radiation.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7860</td>
<td>General Relativity for Cosmology U [0.50]</td>
<td>Introduces the differential geometry of Lorentzian manifolds. The principles of general relativity, causal structure and cosmological singularities. Cosmological space-times with Killing vector fields. Friedmann-Lemaître cosmologies, scalar vector and tensor perturbations in the linear and nonlinear regimes. De Sitter space-times and inflationary models.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7870</td>
<td>Cosmology U [0.50]</td>
<td>Friedmann-Robertson-Walker metric and dynamics; big bang thermodynamics; nucleosynthesis; recombination; perturbation theory and structure formation; anisotropies in the Cosmic Microwave Background; statistics of cosmological density and velocity fields; galaxy formation; inflation.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7880</td>
<td>Special Topics in Astrophysics U [0.50]</td>
<td>Offered on demand</td>
<td></td>
</tr>
<tr>
<td>PHYS*7890</td>
<td>Special Topics in Astrophysics U [0.25]</td>
<td>Offered on demand</td>
<td></td>
</tr>
<tr>
<td>PHYS*7900</td>
<td>Special Topics in Gravitation and Cosmology U [0.50]</td>
<td>Department(s): Department of Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS*7910</td>
<td>Special Topics in Gravitation and Cosmology U [0.25]</td>
<td>Department(s): Department of Physics</td>
<td></td>
</tr>
<tr>
<td>Atomic and Molecular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS*7100</td>
<td>Atomic Physics U [0.50]</td>
<td>Emphasis on atomic structure and spectroscopy. Review of angular momentum, rotations, Wigner-Eckart theorem, n-j symbols. Energy levels in complex atoms, Hartree-Fock theory, radiative-transitions and inner-shell processes. Further topics selected with class interest in mind, at least one of which is to be taken from current literature.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7130</td>
<td>Molecular Physics U [0.50]</td>
<td>Angular momentum and the rotation of molecules; introduction to group theory with application to molecular vibrations; principles of molecular spectroscopy; spectra of isolated molecules; intermolecular interactions and their effects on molecular spectra; selected additional topics (e.g., electronic structure of molecules, experimental spectroscope techniques, neutron scattering, correlation functions, collision induced absorption, extension of group theory to molecular crystals, normal co-ordinate analysis, etc.).</td>
<td></td>
</tr>
<tr>
<td>Condensed Matter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS*7310</td>
<td>Solid State Physics I U [0.50]</td>
<td>Phonons, electron states, electron-electron interaction, electron-ion interaction, static properties of solids.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7320</td>
<td>Solid State Physics II U [0.50]</td>
<td>Transport properties; optical properties; magnetism; superconductivity; disordered systems.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7330</td>
<td>Special Topics in Theoretical Condensed Matter Physics U [0.50]</td>
<td>Department(s): Department of Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS*7370</td>
<td>Special Topics in Surface Physics U [0.50]</td>
<td>Department(s): Department of Physics</td>
<td></td>
</tr>
<tr>
<td>Biophysics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS*7510</td>
<td>Clinical Applications of Physics in Medicine U [0.50]</td>
<td>This course provides an overview of the application of physics to medicine. The physical concepts underlying the diagnosis and treatment of disease will be explored. Topics will include general imaging principles such as resolution, intensity, and contrast; x-ray imaging and computed tomography; radiotopes and nuclear medicine, SPECT and PET; magnetic resonance imaging; ultrasound imaging and radiation therapy. Offered in conjunction with PHYS*4070. Extra work is required of graduate students.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7520</td>
<td>Molecular Biophysics U [0.50]</td>
<td>Physical methods of determining macromolecular structure: energetics, intramolecular and intermolecular forces, with application to lamellar structures, information storage, DNA and RNA, recognition and rejection of foreign molecules. Offered in conjunction with PHYS*4540. Extra work is required of graduate students.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7540</td>
<td>Special Topics in Biophysics U [0.50]</td>
<td>Offered on demand</td>
<td></td>
</tr>
<tr>
<td>PHYS*7570</td>
<td>Special Topics in Biophysics U [0.25]</td>
<td>Offered on demand</td>
<td></td>
</tr>
<tr>
<td>Applied Physics (including Technical Methods)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS*7140</td>
<td>Nonlinear Optics U [0.50]</td>
<td>Classical and Quantum Mechanical descriptions of nonlinear susceptibility, nonlinear wave propagation, nonlinear effects such as Peckel's and Kerr effects, harmonic generation, phase conjugation and stimulated scattering processes.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7470</td>
<td>Optical Electronics U [0.50]</td>
<td>Optoelectronic component fabrication, light propagation in linear and nonlinear media, optical fiber properties, electro-optic and acousto-optic modulation, spontaneous and stimulated emission, semiconductor lasers and detectors, nose effects in fiber systems.</td>
<td></td>
</tr>
<tr>
<td>Special Courses (offered on demand only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS*7120</td>
<td>Special Topics in Theoretical Physics U [0.50]</td>
<td>Department(s): Department of Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS*7710</td>
<td>Special Lecture and Reading Course U [0.50]</td>
<td>Department(s): Department of Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS*7730</td>
<td>Special Topics in Physics U [0.50]</td>
<td>Department(s): Department of Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS*7750</td>
<td>Interinstitution Exchange U [0.50]</td>
<td>At the GWPI director's discretion, a PhD or MSc student may receive credit for a term of specialized studies at another institution. Formal evaluation is required.</td>
<td></td>
</tr>
<tr>
<td>PHYS*7970</td>
<td>MSc Project U [1.00]</td>
<td>Study of a selected topic in physics presented in the form of a written report. For students whose MSc program consists entirely of courses</td>
<td></td>
</tr>
</tbody>
</table>