Program Information

Objectives of the Program

Students in this program obtain a liberal engineering education, which enables them to undertake the solution of engineering problems of the biological world and the associated environment of soil, water and atmosphere. Core subjects, combined with elective opportunities, gives an understanding of the interactions between the environment and human activity. This understanding of the environment is used to develop capability to design systems, structures and machines to operate within the environment.

Concern over both urban and rural environment provides challenges for engineers to optimize the use made of air, water and land for the community at large. Career opportunities are open in many segments of the economy. Examples are: consulting services to municipalities, utilities and industry; resource agencies in advisory, regulatory, planning and utilization; service industries of construction, power and water supply and public health; industrial and agricultural production, design of computer and control systems for processing, storage and transportation.

Many engineers assume management responsibilities after gaining experience in design, development and operations. The liberal education in life, computational, earth or biological sciences in addition to the social sciences and arts prepares students for career mobility.

Accreditation

The baccalaureate degree programs in all engineering programs are accredited by the Canadian Engineering Accreditation Board of the Canadian Council of Professional Engineers. Graduates from accredited engineering programs have the educational requirements to apply for membership in the Professional Engineers, Ontario (PEO) and other provinces after a number of years of acceptable engineering experience and successful completion of a PEO examination in engineering law and ethics.

Requirements of the Program

Students combine their required courses in mathematics, physical sciences and engineering with additional credits providing the opportunity for specialization in: one of the programs; complementary studies courses; and elective subjects. A minimum of 23.50 credits must be obtained. At least 3.00 credits must be complementary studies, which consist of courses in the social sciences, arts, management, engineering economics and communication. They complement the technical content of the curriculum.

All credits are selected according to the schedule of studies for the program. Restrictions apply to the number of non–core credits which may be at the 1000 level. Further information on approved courses may be obtained from the B.Sc.(Eng.) Program Guide available from the director or program counsellor of the School of Engineering.

Programs

The choice of program is made at the time of application. Change of program requires the approval of the director.

The available programs are:

Biological Engineering – the application of engineering to the control and management of biological processes, environments, and human factors in engineering design.

Engineering Systems and Computing – the application of engineering to the design, operation and management of data sensing, transmission and, processing systems, and of control systems.

Environmental Engineering – the application of engineering to protect and restore the environment, through the prevention and treatment of gaseous, liquid and solid wastes.

Water Resources Engineering – the application of engineering to the control and management of water and soil resources to meet human needs while sustaining the natural environment.

The schedule of studies for each program is provided below but guidance in the selection of appropriate courses is available from the program counsellor of the School of Engineering.

Additional Course Requirements

Students lacking OAC courses are advised to consult the Recommendations and Notes in Section IV—Admission Information–B.Sc.(Eng.).

Continuation of Study

Students are advised to consult the regulations for continuation of study within the program which are outlined in detail in Section VIII, Undergraduate Degree Regulation & Procedures. Students will be ineligible to continue in the B.Sc. (Eng.) program and will not be readmitted to the degree program if the same course is failed three times.

Normally, students in the B.Sc. (Eng.) program will be permitted only one supplemental privilege during their studies. It will usually be granted for 3000 or 4000 level courses only.

Conditions for Graduation

To qualify for the degree the student must complete the courses required for a B.Sc. (Eng.) program, obtaining a minimum of 23.50 credits and must meet the appropriate continuation of study requirement.

Co–operative Education

Students studying for the B.SC. (ENG.) degree may participate in a Co-operative Education program following the completion of the first 4 semesters of study. The Co-operative Education program consists of a minimum of 4 semesters of experience in industry with employers who participate in the program. Reports and assignments are graded by a faculty supervisor with assistance from the employer. Evaluations of Co-op semesters are recorded on the student's academic record. The Co-operative Education program provides an excellent opportunity for students to obtain work experience in industry directly related to their field of study. Interested students should consult their program counsellor.

Students wishing to participate in the Co-operative Education program should indicate their intention to do so by applying for admission to the Co-op program on entrance. Following the completion of semester 2, in-course applicants will be considered for admission to the Co-op program.

Successful applicants will:

- 1. have a minimum cumulative average of 70% in semesters 1 and 2
- **2.** have successfully completed all of the credits required in the schedule of studies for semesters 1 and 2
- **3.** be employable in Canada (i.e. be a Canadian citizen or a permanent resident in Canada)
- **4.** have obtained the approval of their Co–op advisor in the school to participate in the program. The Co–op advisor's approval will signify that the schedule of work semesters in the Co–op program as planned by the student is compatible with the schedule of studies in the program in which the student is enrolled.
- **5.** completion of COOP*1100 is a requirement for entry into the first work term.

Please refer to Co-operative Education Program for Admission requirements into the Co-op Program.

Co-op Work Schedule					
	Yr. 1	Yr. 2	Yr. 3	Yr. 4	Yr. 5
Fall	1	3	5	6	work
Winter	2	4	work	7	8
Spring		work	work	work	

All candidates must complete a minimum of 4 of the preceding 5 work terms.

Biological Engineering Program Regular and Co-op (BIOE/BIOE:C)

School of Engineering, College of Physical and Engineering Science. Students interested in problems requiring the application of knowledge from both the biological sciences and engineering will find a challenge as a Biological Engineer. This field of engineering relates to the control of technological processes with the aim of enhancing human, animal and plant life. The program encompasses the technologies of biotechnology, waste management, food engineering, and ergonomics. For example, a Biological Engineer concentrating on biotechnology might design and manage bioreactors to improve their productivity. A career in Biomedical Engineering, which requires graduate work beyond the Bachelor's degree, involves designing instruments and diagnostic techniques to be used in the practice of medicine, developing prosthetic devices, and applying engineering techniques to the study of physiological systems.

Major (Honours Program)

Major (Honours Frogram)		
Semester 1 – F	legular or	Со-ор
CHEM*1040	[0.50]	General Chemistry I
CIS*1500	0.50	Introduction to Programming
ENGG*1100	0.75	Engineering and Design I
HIST*1250	0.50	Science and Society Since 1500
MATH*1200	0.50	Calculus I
Semester 2 – F	Regular or	Со-ор
CHEM*1050	[0.50]	General Chemistry II
ENGG*1210	[0.50]	Engineering Mechanics I
ENGG*1500	[0.50]	Engineering Analysis
MATH*1210	[0.50]	Calculus II
PHYS*1130	[0.50]	Introductory Physics with Applications II
Semester 3 – F		
COOP*1100	[0.00]	Introduction to Co–operative Education
ENGG*2100	[0.75]	Engineering and Design II
ENGG*2100	[0.50]	Material Science
ENGG*2120	[0.50]	Engineering Mechanics II
ENGG*2400	[0.50]	Engineering Systems Analysis
MATH*2270	[0.50]	Applied Differential Equations
MICR*1020	[0.50]	Fundamentals of Applied Microbiology
Semester 4 – F		11 07
	0	•
CHEM*2580 ENGG*2230	[0.50] [0.50]	Introductory Biochemistry Fluid Mechanics
ENGG*2250 ENGG*2450		
	[0.50]	Network Theory Biological Engineering Systems I
ENGG*2660 MATH*2130	[0.50] [0.50]	Biological Engineering Systems I Numerical Methods
STAT*2120	[0.50]	Probability and Statistics for Engineers
Semester 5 – F		
	0	•
ENGG*3160	[0.50]	Biological Engineering Systems II
ENGG*3170	[0.50]	Biomaterials
ENGG*3240	[0.50]	Engineering Economics
ENGG*3260	[0.50]	Thermodynamics
ENGG*3450	[0.50]	Electrical Devices
0.50 restricted		
Semester 6 Re	gular / Sen	nester 7 Co–op
ENGG*3100	[0.75]	Engineering and Design III
ENGG*3410	[0.50]	Systems and Control Theory
ENGG*3430	[0.50]	Heat and Mass Transfer
1.00 restricted	electives	
Semester 7 Re	gular / Sen	nester 6 Co–op
ENGG*4390	[0.75]	Bio-instrumentation Design

ENGG*4390 [0.75] Bio–instrumentation Design 2.75 restricted electives

Semester 8 (Winter) – Regular or Co–op

- ENGG*4110 [1.00] Biological Engineering Design IV
- ENGG*4280 [0.75] Digital Process Control Design
- 1.00 restricted elective
- Restricted Electives (see Program Guide for more information)
- 2.00 credits in Complementary Studies Electives
- 0.75 credit in required Design Elective
- 1.00 credits in Biological Engineering Electives
- 1.00 credits in Life Science Electives
- 0.50 credits in Free electives

Environmental Engineering Program Regular and Co-op (ENVE/ENVE:C)

School of Engineering, College of Physical and Engineering Science. In recent years there has been concern about the degradation of the environment. The School of Engineering has responded to this concern by developing an Environmental Engineering program. Graduates will possess design and skills to minimize and prevent the impact of human activities on water, soil and air systems. Graduates will also creatively integrate humanistic and social perspectives

in their solutions.

Major (Honours Program)

Major (Honours Program)				
Semester 1 – Regular or Co–op				
CHEM*1040	[0.50]	General Chemistry I		
CIS*1500	[0.50]	Introduction to Programming		
ENGG*1100	0.75	Engineering and Design I		
HIST*1250	[0.50]	Science and Society Since 1500		
MATH*1200	[0.50]	Calculus I		
Semester 2 – F	Regular or	Со-ор		
CHEM*1050	[0.50]	General Chemistry II		
ENGG*1210	[0.50]	Engineering Mechanics I		
ENGG*1500	[0.50]	Engineering Analysis		
MATH*1210	0.50	Calculus II		
PHYS*1130	0.50	Introductory Physics with Applications II		
Semester 3 – F				
COOP*1100	[0.00]	Introduction to Co-operative Education		
ENGG*2100	[0.75]	Engineering and Design II		
ENGG*2120	[0.50]	Material Science		
ENGG*2400	[0.50]	Engineering Systems Analysis		
MATH*2270	[0.50]	Applied Differential Equations		
0.50 restricted				
One of:				
BIOL*1030	[0.50]	Biology I		
MICR*1020	[0.50]	Fundamentals of Applied Microbiology		
Semester 4 – F	Regular or	Со-ор		
ENGG*2230	[0.50]	Fluid Mechanics		
ENGG*2450	0.50	Network Theory		
ENGG*2560	[0.50]	Environmental Engineering Systems		
MATH*2130	[0.50]	Numerical Methods		
STAT*2120	[0.50]	Probability and Statistics for Engineers		
One of:				
BIOL*1040	[0.50]	Biology II		
0.50 restricted	elective			
) restricted elective in Semester 4 if MICR*1020 was		
selected in Sen				
Semester 5 – F	0	со-ор		
ENGG*3180	[0.50]	Air Quality		
ENGG*3240	[0.50]	Engineering Economics		
ENGG*3260	[0.50]	Thermodynamics		
ENGG*3590	[0.50]	Water Quality		
ENGG*3650	[0.50]	Hydrology		
0.50 restricted elective				
Semester 6 Regular / Semester 7 Co-op				
ENGG*3100	[0.75]	Engineering and Design III		
ENGG*3410	[0.50]	Systems and Control Theory		
FNGG*3430	[0 50]	Heat and Mass Transfer		

ENGG*3410	[0.50]	Systems and Control Theory
ENGG*3430	[0.50]	Heat and Mass Transfer
ENGG*3470	[0.50]	Mass Transfer Operations

Semester 7 Regular / Semester 6 Co-op

	8	
ENGG*3670	[0.50]	Soil Mechanics
ENGG*4330	[0.75]	Air Pollution Control
ENGG*4340	[0.50]	Solid and Hazardous Waste Management
ENGG*4370	[0.75]	Urban Water Systems Design
0.50 restricted	elective	

Semester 8 - Regular or Co-op

ENGG*4130	[1.00]	Environmental Engineering Design IV
ENGG*4260	[0.75]	Water and Wastewater Treatment Design
GEOL*3060	[0.50]	Groundwater
0.50 maateriated	alaatirra	

0.50 restricted elective **Restricted Electives**

1.00 restricted elective

Environmental engineering students must complete the following restricted electives (see Program Guide for more information). Yu can take these courses where Restricted Electives are indicated in the schedule of courses. A maximum of three 1000 level electives is allowed. Restricted electives must include: 2.00 credits in Complementary Studies electives 0.50 credit in Free Elective 0.50 credit in Science/Engineering electives One of: 0.50 credit in Science electives (if MICR*1020 is selected in Semester 3)

BIOL*1040 (if BIOL*1030 is selected in Semester 3)				
	0	es should not be used as Free Electives:		
CHEM*2820	[0.50]	Thermodynamics and Kinetics		
CHEM*2880	[0.50]	Physical Chemistry		
GEOG*3620	[0.50]	Desert Environments		
GEOL*3190	[0.50]	Environmental Water Chemistry		
PHYS*1600	[0.50]	Contemporary Astronomy		
SOIL*3070	[0.50]	Environmental Soil Physics		
SOIL*3080	[0.50]	Soil and Water Conservation		
TOX*3360	[0.50]	Environmental Chemistry and Toxicology		
Minor (Hone	ours Prog	ram)		
The minor can	be satisfied	by taking the following additional courses:		
BIOL*2060	[0.50]	Ecology		
CHEM*2580	[0.50]	Introductory Biochemistry		
CHEM*3360	[0.50]	Environmental Chemistry and Toxicology		
ENGG*3180	[0.50]	Air Quality		
ENGG*3590	[0.50]	Water Quality		
ENGG*4260	[0.75]	Water and Wastewater Treatment Design		
GEOG*1300	[0.50]	Introduction to the Biophysical Environment		
MICR*1020	[0.50]	Fundamentals of Applied Microbiology		
MICR*4180	[0.50]	Microbial Processes in Environmental Management		
One of:				
ENGG*2560	[0.50]	Environmental Engineering Systems		
ENGG*2660	[0.50]	Biological Engineering Systems I		
Students must s	elect an en	vironmental application project for the design course		

in the student's major program.

Engineering Systems and Computing Program Regular and Co-op (ESC/ESC:C)

School of Engineering, College of Physical and Engineering Science. In the last quarter century, the computer has grown so rapidly in importance that engineering, science, business and industry could not function without it. With this growth, a need has evolved for specialists who can incorporate computers and information into complex industrial processes. The Engineering Systems and Computing program has been conceived to satisfy this need. Graduates from this program will have, in addition to the basic engineering skills, the ability to identify application areas where computer technology represents the optimum solution, specify appropriate software for process control, data reduction and/or expert system implementation and integrate the computer into the overall system application.

Major (Honours Program)

Semester 1 – F	Regular or	Со-ор	
CHEM*1040	[0.50]	General Chemistry I	
CIS*1650	[0.50]	Programming I	
ENGG*1100	[0.75]	Engineering and Design I	
HIST*1250	[0.50]	Science and Society Since 1500	
MATH*1200	[0.50]	Calculus I	
Semester 2 – F			
CIS*1900	[0.50]		
CIS*2650		Discrete Structures in Computer Science	
ENGG*1210	[0.50]	Programming II	
ENGG*1210 ENGG*1500	[0.50]	Engineering Mechanics I	
	[0.50]	Engineering Analysis Calculus II	
MATH*1210 PHYS*1130	[0.50]	Introductory Physics with Applications II	
	[0.50]		
Semester 3 – F	0	•	
CIS*2420	[0.50]	Data Structures	
COOP*1100	[0.00]	Introduction to Co-operative Education	
ENGG*2100	[0.75]	Engineering and Design II	
ENGG*2120	[0.50]	Material Science	
ENGG*2400	[0.50]	Engineering Systems Analysis	
ENGG*2410	[0.50]	Digital Systems Design Using Descriptive Languages	
MATH*2270	[0.50]	Applied Differential Equations	
Semester 4 – F	Regular or	Со-ор	
CIS*3110	[0.50]	Operating Systems	
ENGG*2230	[0.50]	Fluid Mechanics	
ENGG*2450	[0.50]	Network Theory	
ENGG*3410	[0.50]	Systems and Control Theory	
MATH*2130	[0.50]	Numerical Methods	
STAT*2120	[0.50]	Probability and Statistics for Engineers	
Semester 5 – F	Regular or	Со-ор	
ENGG*3240	[0.50]	Engineering Economics	
ENGG*3260	[0.50]	Thermodynamics	
ENGG*3390	[0.50]	Signal Processing	
ENGG*3450	[0.50]	Electrical Devices	
ENGG*3640	[0.50]	Microcomputer Interfacing	
0.50 restricted		interseoniputer internating	
		mester 7 Co–op	
CIS*3490	[0.50]	The Analysis and Design of Computer Algorithms	
ENGG*3100	[0.30]	Engineering and Design III	
ENGG*3430	[0.75]	Heat and Mass Transfer	
1.00 or 1.25 restricted elective			
Semester 7 Regular / Semester 6 Co-op			
ENGG*4420	[0.75]	Real-time Systems Design	
ENGG*4450	[0.50]	Large–Scale Software Architecture Engineering	
1.50 or 1.75 res			
Semester 8 – Regular or Co–op			
ENGG*4120	[1.00]	Engineering Systems and Computing Design IV	
ENGG*4280	[0.75]	Digital Process Control Design	
1.00 elective	-	-	

Restricted Electives (see Program Guide for more information)

- 2.00 credits in Complementary Studies
- 1.50 credits in ES&C Engineering Electives
- 0.75 credits in Engineering Design Electives

Water Resources Engineering Program Regular and Coop (WRE/WRE:C)

School of Engineering, College of Physical and Engineering Science. Water resources engineering focuses on the use and management of land and water resources in rural and urban watersheds. The hydrologic and hydraulic behaviour of watershed flow systems is combined with engineering science and. Water management includes flood prevention, warning and control; drainage; design of natural channels; irrigation; and erosion prevention and control. The supply of water for municipal, industrial and agricultural purposes is considered in the context of resource conservation. Identification of potential point and diffused sources of pollutants is used to develop efficient, environmentally sustainable and economical methods to preserve high–quality water to sustain human life and water–dependent ecosystems.

Major (Honours Program)

Major (Honours Program)		
Semester 1 – Regular or Co–op		
CHEM*1040	[0.50]	General Chemistry I
CIS*1500	[0.50]	Introduction to Programming
ENGG*1100	[0.75]	Engineering and Design I
HIST*1250	[0.50]	Science and Society Since 1500
MATH*1200	[0.50]	Calculus I
Semester 2 – R	legular or	Со-ор
CHEM*1050	[0.50]	General Chemistry II
ENGG*1210	[0.50]	Engineering Mechanics I
ENGG*1500	[0.50]	Engineering Analysis
MATH*1210	[0.50]	Calculus II
PHYS*1130	[0.50]	Introductory Physics with Applications II
Semester 3 – R	legular or	Со-ор
COOP*1100	[0.00]	Introduction to Co-operative Education
ENGG*2100	[0.75]	Engineering and Design II
ENGG*2120	[0.50]	Material Science
ENGG*2400	[0.50]	Engineering Systems Analysis
GEOG*2000	[0.50]	Geomorphology
MATH*2270	[0.50]	Applied Differential Equations
MICR*1020	[0.50]	Fundamentals of Applied Microbiology
Semester 4 – R	legular or	Со-ор
ENGG*2230	[0.50]	Fluid Mechanics
ENGG*2450	[0.50]	Network Theory
ENGG*2550	[0.50]	Water Management
ENGG*2560	[0.50]	Environmental Engineering Systems
MATH*2130	[0.50]	Numerical Methods
STAT*2120	[0.50]	Probability and Statistics for Engineers
Semester 5 – R	legular or	Со-ор
ENGG*3240	[0.50]	Engineering Economics
ENGG*3260	[0.50]	Thermodynamics
ENGG*3590	[0.50]	Water Quality
ENGG*3650	[0.50]	Hydrology
ENGG*3670	[0.50]	Soil Mechanics
0.50 restricted	elective	
Semester 6 Re	gular / Ser	nester 7 Co–op
ENGG*3100	[0.75]	Engineering and Design III
ENGG*3430	[0.50]	Heat and Mass Transfer
GEOL*3060	[0.50]	Groundwater
1.50 restricted e	electives	

Semester 7 Regular / Semester 6 Co-op

	8	
ENGG*4250	[0.75]	Watershed Systems Design
ENGG*4360	[0.75]	Soil–Water Conservation Systems Design
ENGG*4370	[0.75]	Urban Water Systems Design
GEOG*3480	[0.50]	Geographic Information Systems
0.50 restricted elective		

Semester 8 (Winter) Regular or Co-op

ENGG*4150 [1.00] Water Resources Engineering Design IV 1.50 restricted electives

Restricted Electives (see Program Guide for more information)

- 1.00 credits in Engineering electives
- 0.50 credits in Environmental electives
- 2.00 credits in Complementary Studies
- 0.50 credits in Water Resources elective

Food Engineering (FENG)

School of Engineering, College of Physical and Engineering Science. Minor (Honours Program)

MINION (110III)			
The minor can be satisfied by taking the following additional courses:			
AGEC*2220	[0.50]	Financial Accounting	
CHEM*2580	[0.50]	Introductory Biochemistry	
ENGG*2660	[0.50]	Biological Engineering Systems I	
ENGG*3830	[0.50]	Bio–Process Engineering	
FOOD*2150	[0.50]	Introduction to Nutritional and Food Sciences	
MICR*1020	[0.50]	Fundamentals of Applied Microbiology	
0.75 Biological	Engineerin	g Design Course*	
One of:			
ENGG*4260	[0.75]	Water and Wastewater Treatment Design	
ENGG*4300	[0.75]	Food Processing Engineering Design	
Two of:			
COST*3010	[0.50]	Quality Management	
FOOD*4070	[0.50]	Food Packaging	
FOOD*4110	[0.50]	Meat and Poultry Processing	
One of:			
FOOD*3160	[0.75]	Food Processing I	
FOOD*4520	[0.50]	Cereal Technology	
One of:			
FOOD*3230	[0.75]	Food Microbiology	
FOOD*4350	[0.50]	Processing Plant Technology	
*students must select a food application project for the design course in the stu-			
-		-	

dent's major program **NOTE:** Courses taken for the minors are credited to appropriate elective areas.