2007-2008 Undergraduate Calendar

The information published in this Undergraduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2007-2008 academic year, including the Summer Semester 2007, the Fall Semester 2007 and the Winter Semester 2008. For your convenience the Undergraduate Calendar is available in PDF format.

If you wish to link to the Undergraduate Calendar please refer to the Linking Guidelines.

The University is a full member of:

• The Association of Universities and Colleges of Canada Contact Information:

University of Guelph Guelph, Ontario, Canada N1G 2W1 519-824-4120 http://www.uoguelph.ca

Revision Information:

Initial Publication
Second Publication
Third Publication
Fourth Publication
Fifth Publication
Sixth Publication
Seventh Publication
Eighth Publication
Ninth Publication

Disclaimer

University of Guelph 2007

The information published in this Undergraduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2007-2008 academic year, including the Summer Semester 2007, the Fall Semester 2007 and the Winter Semester 2008.

The University reserves the right to change without notice any information contained in this calendar, including any rule or regulation pertaining to the standards for admission to, the requirements for the continuation of study in, and the requirements for the granting of degrees or diplomas in any or all of its programs. The publication of information in this calendar does not bind the University to the provision of courses, programs, schedules of studies, or facilities as listed herein.

The University will not be liable for any interruption in, or cancellation of, any academic activities as set forth in this calendar and related information where such interruption is caused by fire, strike, lock-out, inability to procure materials or trades, restrictive laws or governmental regulations, actions taken by faculty, staff or students of the University or by others, civil unrest or disobedience, or any other cause of any kind beyond the reasonable control of the University.

In the event of a discrepancy between a print version (downloaded) and the Web version, the Web version will apply,

Published by: Undergraduate Program Services

Collection, Use and Disclosure of Personal Information

Personal information is collected under the authority of the University of Guelph Act (1964), and in accordance with Ontario's Freedom of Information and Protection of Privacy Act (FIPPA) http://www.e-laws.gov.on.ca/DBLaws/Statutes/English/90f31_e.htm. This information is used by University officials in order to carry out their authorized academic and administrative responsibilities and also to establish a relationship for alumni and development purposes. Certain personal information is disclosed to external agencies, including the Ontario Universities Application Centre, the Ministry of Training, Colleges and Universities, and Statistics Canada, for statistical and planning purposes, and is disclosed to other individuals or organizations in accordance with the Office of Registrarial Services Departmental Policy on the Release of Student Information. For details on the use and disclosure of this information call the Office of Registrarial Services at the University at (519) 824-4120 or see http://www.uoguelph.ca/registrar/index.cfm?index.

Statistics Canada - Notification of Disclosure

For further information, please see Statistics Canada's web site at http://www.statcan.ca and Section XIV Statistics Canada.

Address for University Communication

Depending on the nature and timing of the communication, the University may use one of these addresses to communicate with students. Students are, therefore, responsible for checking all of the following on a regular basis:

Email Address

The University issued email address is considered an official means of communication with the student and will be used for correspondence from the University. Students are responsible for monitoring their University-issued email account regularly. See Section I--Statement of Students' Academic Responsibilities for more information.

Home Address

Students are responsible for maintaining a current mailing address with the University. Address changes can be made, in writing, through Undergraduate Program Services.

Name Changes

The University of Guelph is committed to the integrity of its student records, therefore, each student is required to provide either on application for admission or on personal data forms required for registration, his/her complete, legal name. Any requests to change a name, by means of alteration, deletion, substitution or addition, must be accompanied by appropriate supporting documentation.

Student Confidentiality and Release of Student Information Policy Excerpt

The University undertakes to protect the privacy of each student and the confidentiality of his or her record. To this end the University shall refuse to disclose personal information to any person other than the individual to whom the information relates where disclosure would constitute an unjustified invasion of the personal privacy of that person or of any other individual. All members of the University community must respect the confidential nature of the student information which they acquire in the course of their work. Complete policy at http://www.uoguelph.ca/policies.

Table of Contents

Bachelor of Engineering [B.Eng.]	295
Program Information	295
Biological Engineering Program Regular and Co-op (BIOE/BIOE:C)	295
Food Engineering (FENG)	296
Engineering Systems and Computing Program Regular and Co-op	
(ESC/ESC:C)	296
Environmental Engineering Program Regular and Co-op	
(ENVE/ENVE:C)	296
Water Resources Engineering Program Regular and Co-op (WRE/WRE:C)	297

Bachelor of Engineering [B.Eng.]

Program Information

Objectives of the Program

Students in this program obtain a liberal engineering education, which includes a comprehensive core of science, mathematics and engineering science that provides a strong foundation for engineering design and analysis. This enables students to undertake the solution of engineering problems in the areas of systems and computing, biological, environmental and water resources. Core subjects, combined with elective opportunities, provide an understanding of the connection between engineering and science, coupled with the interdisciplinary skills needed to address the problems and challenges faced by engineers in society today.

The curriculum includes a strong emphasis on engineering design. Students engage in engineering design throughout the program, and gain experience in computer aided design and modeling, conceptual design and physical construction. Emphasis is on teamwork and communications skills, as well as working on interdisciplinary projects.

Career opportunities are open in many segments of the economy. Examples are: consulting services to municipalities, utilities and industry; resource agencies in advisory, regulatory, planning and utilization; service industries of construction, power and water supply and public health; manufacturing, design of computer and control systems, hardware and software development; medical devices, pharmaceutical and food industries and industrial ergonomics; academic research and graduate studies within and without the field of engineering.

Many engineers assume management responsibilities after gaining experience in design, development and operations. The balance provided by liberal arts and engineering education allows graduates to enjoy a great deal of career mobility.

Accreditation

The baccalaureate degree programs in all engineering programs are accredited by the Canadian Engineering Accreditation Board of the Canadian Council of Professional Engineers. Graduates from accredited engineering programs have the educational requirements to apply for membership in the Professional Engineers Ontario (PEO) and other provinces after a number of years of acceptable engineering experience and successful completion of a PEO examination in engineering law and ethics.

Requirements of the Program

Students combine their required courses in mathematics, physical sciences and engineering with additional credits providing the opportunity for specialization in: one of the programs; complementary studies courses; and elective subjects. A minimum of 23.50 credits must be obtained. At least 3.00 credits must be complementary studies, which consist of courses in the social sciences, arts, management, engineering economics and communication. They complement the technical content of the curriculum.

All credits are selected according to the schedule of studies for the program. Restrictions apply to the number of non-core credits which may be at the 1000 level. Further information on approved courses may be obtained from the B.Eng. Program Guide available from the director or program counsellor of the School of Engineering.

Programs

The choice of program is made at the time of application. Change of program requires the approval of the director.

The available programs are:

Biological Engineering - the application of engineering to the control and management of biological processes, environments, and human factors in engineering design.

Engineering Systems and Computing - the application of engineering to the design, operation and management of data sensing, transmission and, processing systems, and of control systems.

Environmental Engineering - the application of engineering to protect and restore the environment, through the prevention and treatment of gaseous, liquid and solid wastes.

Water Resources Engineering - the application of engineering to the control and management of water and soil resources to meet human needs while sustaining the natural environment.

The schedule of studies for each program is provided below but guidance in the selection of appropriate courses is available from the program counsellor of the School of Engineering.

Additional Course Requirements

Students lacking OAC courses are advised to consult the Recommendations and Notes in Section IV--Admission Information-B.Eng..

Continuation of Study

Students are advised to consult the regulations for continuation of study within the program which are outlined in detail in Section VIII, Undergraduate Degree Regulation & Procedures. Students will be ineligible to continue in the B.Eng. program and will not be readmitted to the degree program if the same course is failed three times.

Normally, students in the B.Eng. program will be permitted only one supplemental privilege during their studies. It will usually be granted for 3000 or 4000 level courses only.

To qualify for the degree the student must complete the courses required for a B.Eng. program, obtaining a minimum of 23.50 credits and must achieve an overall minimum cumulative average of at least 60% and a minimum cumulative average of at least 60% in all ENGG courses.

Co-operative Education

Students studying for the B.Eng. degree may participate in a Co-operative Education program following the completion of the first 4 semesters of study. The Co-operative Education program consists of a minimum of 4 semesters of experience in industry with employers who participate in the program. Reports and assignments are graded by a faculty supervisor with assistance from the employer. Evaluations of Co-op semesters are recorded on the student's academic record. The Co-operative Education program provides an excellent opportunity for students to obtain work experience in industry directly related to their field of study. Interested students should consult their program counsellor.

Students wishing to participate in the Co-operative Education program should indicate their intention to do so by applying for admission to the Co-op program on entrance. Following the completion of semester 2, in-course applicants will be considered for admission to the Co-op program.

Successful applicants will:

- 1. have a minimum cumulative average of 70% in semesters 1 and 2
- 2. have successfully completed all of the credits required in the schedule of studies for semesters 1 and 2
- 3. be employable in Canada (i.e. be a Canadian citizen or a permanent resident in Canada)
- 4. have obtained the approval of their Co-op advisor in the school to participate in the program. The Co-op advisor's approval will signify that the schedule of work semesters in the Co-op program as planned by the student is compatible with the schedule of studies in the program in which the student is enrolled.
- 5. completion of COOP*1100 is a requirement for entry into the first work term.

Please refer to Co-operative Education Program for Admission requirements into the Co-op Program.

Co-op Work Schedule					
	Yr. 1	Yr. 2	Yr. 3	Yr. 4	Yr. 5
Fall	1	3	5	6	work
Winter	2	4	work	7	8
Spring		work	work	work	

All candidates must complete a minimum of 4 of the preceding 5 work terms.

Biological Engineering Program Regular and Co-op (BIOE/BIOE:C)

School of Engineering, College of Physical and Engineering Science

Students interested in problems requiring the application of knowledge from both the biological sciences and engineering will find a challenge as a Biological Engineer. This field of engineering relates to the control of technological processes with the aim of enhancing human, animal and plant life. The program encompasses the technologies of biotechnology, waste management, food engineering, and ergonomics. For example, a Biological Engineer concentrating on biotechnology might design and manage bioreactors to improve their productivity. A career in Biomedical Engineering, which requires graduate work beyond the Bachelor's degree, involves designing instruments and diagnostic techniques to be used in the practice of medicine, developing prosthetic devices, and applying engineering techniques to the study of physiological systems.

Major (Honours Program)

Semester 1 - Regular or Co-op

CHEM*1040	[0.50]	General Chemistry I
CIS*1500	[0.50]	Introduction to Programming
ENGG*1100	[0.75]	Engineering and Design I
HIST*1250	[0.50]	Science and Society Since 1500
MATH*1200	[0.50]	Calculus I
Semester 2 - R	Regular or	Со-ор
CHEM*1050	[0.50]	General Chemistry II
ENGG*1210	[0.50]	Engineering Mechanics I
ENGG*1500	[0.50]	Engineering Analysis
MATH*1210	[0.50]	Calculus II
PHYS*1130	[0.50]	Physics with Applications
Semester 3 - R	legular or	Со-ор
COOP*1100	[0.00]	Introduction to Co-operative Education
ENGG*2100	[0.75]	Engineering and Design II
ENGG*2120	[0.50]	Material Science
ENGG*2160	[0.50]	Engineering Mechanics II
ENGG*2400	[0.50]	Engineering Systems Analysis
MATH*2270	[0.50]	Applied Differential Equations
MICR*1020	[0.50]	Fundamentals of Applied Microbiology

296

<u> </u>		a	
Semester 4 - F	Regular or	: Со-ор	
BIOC*2580	[0.50]	Introductory Biochemistry	
ENGG*2230	[0.50]	Fluid Mechanics	
ENGG*2450	[0.50]	Electric Circuits	
ENGG*2660	[0.50]	Biological Engineering Systems I	
MATH*2130	[0.50]	Numerical Methods	
STAT*2120	[0.50]	Probability and Statistics for Engineers	
Semester 5 - F	Regular or	: Со-ор	
ENGG*3160	[0.50]	Biological Engineering Systems II	
ENGG*3170	[0.50]	Biomaterials	
ENGG*3240	[0.50]	Engineering Economics	
ENGG*3260	[0.50]	Thermodynamics	
ENGG*3450	[0.50]	Electrical Devices	
0.50 restricted el	ectives		
Semester 6 Re	egular / Se	emester 7 Co-op	
ENGG*3100	[0.75]	Engineering and Design III	
ENGG*3410	[0.50]	Systems and Control Theory	
ENGG*3430	[0.50]	Heat and Mass Transfer	
1.00 restricted el	ectives		
Semester 7 Re	egular / Se	emester 6 Co-op	
ENGG*4390	[0.75]	Bio-instrumentation Design	
2.75 restricted el	ectives	-	
Semester 8 (W	vinter) - R	Regular or Co-op	
ENGG*4110	[1.00]	Biological Engineering Design IV	
ENGG*4280	[0.75]	Digital Process Control Design	

1.00 restricted electives

Restricted Electives (see Program Guide for more information)

- · 2.00 credits in Complementary Studies (Students need to take 0.50 credits from each of the three sub-lists noted in the Program Guide. The remaining 0.50 credits can be taken from any Complementary studies sub-list.)
- 0.75 credits in required Design electives
- 1.00 credits in Biological Engineering electives
- 1.00 credits in Life Science electives
- 0.50 credits in Free electives

Food Engineering (FENG)

School of Engineering, College of Physical and Engineering Science

Minor (Honours Program)

Students must be registered in the B.Eng. degree program to apply for a Minor in Food Engineering.

The minor can be satisfied by taking the following additional courses:			
BIOC*2580	[0.50]	Introductory Biochemistry	
BUS*2220	[0.50]	Financial Accounting	
ENGG*2660	[0.50]	Biological Engineering Systems I	
ENGG*3830	[0.50]	Bio-Process Engineering	
FOOD*2150	[0.50]	Introduction to Nutritional and Food Science	
MICR*1020	[0.50]	Fundamentals of Applied Microbiology	
0.75 Biological E	ngineering D	Design Course*	
One of:			
ENGG*4300	[0.75]	Food Processing Engineering Design	
ENGG*4380	[0.75]	Bioreactor Design	
Two of:			
FOOD*4070	[0.50]	Food Packaging	
FOOD*4110	[0.50]	Meat and Poultry Processing	
MCS*3010	[0.50]	Quality Management	
One of:			
FOOD*3160	[0.75]	Food Processing I	
FOOD*4520	[0.50]	Cereal Technology	
One of:			
FOOD*2400	[0.50]	Introduction to Food Chemistry	
FOOD*3010	[0.50]	Food Chemistry	
FOOD*3230	[0.75]	Food Microbiology	
FOOD*3260	[0.50]	Industrial Microbiology	

*students must select a food application project for the design course in the student's major program

NOTE: Courses taken for the minors are credited to appropriate elective areas.

Engineering Systems and Computing Program Regular and Co-op (ESC/ESC:C)

School of Engineering, College of Physical and Engineering Science

In the last quarter century, the computer has grown so rapidly in importance that engineering, science, business and industry could not function without it. With this growth, a need has evolved for specialists who can incorporate computers and information into complex industrial processes. The Engineering Systems and Computing program has been

conceived to satisfy this need. Graduates from this program will have, in addition to the basic engineering skills, the ability to identify application areas where computer technology represents the optimum solution, specify appropriate software for process control, data reduction and/or expert system implementation and integrate the computer into the overall system application.

Major (Honours Program)

Semester 1 - Re	gular or	Со-ор	
CHEM*1040	[0.50]	General Chemistry I	
CIS*1500	[0.50]	Introduction to Programming	
ENGG*1100	[0.75]	Engineering and Design I	
HIST*1250	[0.50]	Science and Society Since 1500	
MATH*1200	[0.50]	Calculus I	
Semester 2 - Re	gular or	Со-ор	
CIS*2500	[0.50]	Intermediate Programming	
ENGG*1210	[0.50]	Engineering Mechanics I	
ENGG*1500	[0.50]	Engineering Analysis	
MATH*1210	[0.50]	Calculus II	
PHYS*1010	[0.50]	Introductory Electricity and Magnetism	
PHYS*1130	[0.50]	Physics with Applications	
Semester 3 - Re	gular or	Со-ор	
CIS*2430	[0 50]	Object Oriented Programming	
COOP*1100	[0.30]	Introduction to Co-operative Education	
EUGG*2100	[0.00]	Engineering and Design II	
ENGG*2100	[0.75]	Material Science	
ENGG*2120	[0.50]	Engineering Systems Analysis	
ENGG*2400	[0.50]	Digital Systems Design Using Descriptive Languages	
MATH*2270	[0.50]	Applied Differential Equations	
Semester 4 - Re	oular or	Co-on	
Gueranto	50 501		
CIS*3110 ENCC*2220	[0.50]	Operating Systems	
ENGG*2250	[0.50]	Fluid Mechanics	
ENGG*2450 MATU*2120	[0.50]	Electric Circuits	
MAIN*2150	[0.50]	Drohability and Statistics for Engineers	
SIAI*2120	[0.50]	Probability and Statistics for Engineers	
Semester 5 - Re	ouves	Co-op	
CIE*2520	10 501		
CIS*2520	[0.50]	Data Structures	
ENGG*5200	[0.50]	Signal Processing	
ENGC*2450	[0.50]	Floatrical Davidas	
ENGG*3430	[0.50]	Electrical Devices Microcomputer Interfacing	
0.50 restricted ele	[0.50]	where computer interfacing	
Semester 6 - Re	aular / S	emester 7 - Co-on	
ENGC#2100	guiai / 5		
ENGG*3100	[0.75]	Engineering and Design III	
ENGG*3410	[0.50]	Systems and Control Theory	
ENGG*5450	[U.SU] stad alastic		
Somestor 7 D	mlon / S	es amostar 6. Ca an	
Semester / - Ke	gular / S	emester 0 - Co-op	
ENGG*3240	[0.50]	Engineering Economics	
ENGG*4420	[0.75]	Real-time Systems Design	
ENGG*4450	[0.50]	Large-Scale Software Architecture Engineering	
1.00 or 125 restric	ted electiv	es	
Semester 8 - Ke	egular or	Со-ор	
ENGG*4120	[1.00]	Engineering Systems and Computing Design IV	
ENGG*4280	[0.75]	Digital Process Control Design	
1.00 electives			
Restricted Elec	tives (see	Program Guide for more information)	
 2.00 credits in 	Complem	entary Studies (Students need to take 0.50 credits from each	
of the three su	of the three sub-lists noted in the Program Guide. The remaining 0.50 credits can be		
taken from any Complementary Studies sub-list.)			
 1.50 credits in 	S&CE En	gineering electives	
• 0.75 credits in	Engineeri	ng Design electives	
Environment	- al Engin	eering Program Regular and Co.on	
(ENVE/ENVI	E:C)	come i rogram reguar and co-op	

School of Engineering, College of Physical and Engineering Science

In recent years there has been concern about the degradation of the environment. The School of Engineering has responded to this concern by developing an Environmental Engineering program. Graduates will possess design and skills to minimize and prevent the impact of human activities on water, soil and air systems. Graduates will also creatively integrate humanistic and social perspectives in their solutions.

m (II an aumo

Major (Hono	urs Prog	raiii)
Semester 1 - Re	gular or (Со-ор
CHEM*1040	[0.50]	General Chemistry I
CIS*1500	[0.50]	Introduction to Programming
ENGG*1100	[0.75]	Engineering and Design I
HIST*1250	[0.50]	Science and Society Since 1500
MATH*1200	[0.50]	Calculus I
Semester 2 - Re	oular or (Co-on
CUEM*1050	10 501	
CHEM*1050	[0.50]	Engineering Machanias I
ENGG*1210	[0.50]	Engineering Mechanics I
ENGG*1500	[0.50]	Coloring Analysis
MATH*1210	[0.50]	Calculus II Physics with Applications
Somestor 2 D	[0.30]	Physics with Applications
Semester 3 - Ko	guiar or v	
COOP*1100	[0.00]	Introduction to Co-operative Education
ENGG*2100	[0.75]	Engineering and Design II
ENGG*2120	[0.50]	Material Science
ENGG*2400	[0.50]	Engineering Systems Analysis
MATH*22/0	[0.50]	Applied Differential Equations
0.50 restricted ele	cuves	
One of:	FO 501	
BIOL*1030	[0.50]	Biology I
MICK*1020	[0.50]	Fundamentals of Applied Microbiology
Semester 4 - Re	gular or (Со-ор
ENGG*2230	[0.50]	Fluid Mechanics
ENGG*2450	[0.50]	Electric Circuits
ENGG*2560	[0.50]	Environmental Engineering Systems
MATH*2130	[0.50]	Numerical Methods
STAT*2120	[0.50]	Probability and Statistics for Engineers
One of:		
BIOL*1040	[0.50]	Biology II
0.50 restricted	electives	
Note: Students sel	ect 0.50 res	tricted electives in Semester 4 if MICR*1020
in Semester 3.		
Semester 5 - Re	gular or (Со-ор
ENGG*3180	[0.50]	Air Quality
ENGG*3240	[0.50]	Engineering Economics
ENGG*3260	[0.50]	Thermodynamics
ENGG*3590	[0.50]	Water Quality
ENGG*3650	[0.50]	Hydrology
0.50 restricted ele	ctives	
Semester 6 Reg	gular / Sen	nester 7 Co-op
ENGG*3100	[0,75]	Engineering and Design III
ENGG*3410	[0.70]	Systems and Control Theory
ENGG*3430	[0.50]	Heat and Mass Transfer
ENGG*3470	[0.50]	Mass Transfer Operations
1.00 restricted ele	ctives	Thuss Transfer Operations
Semester 7 Reg	ular / Sen	nester 6 Co-op
ENGG*2(70	,uiai / 501	
ENGG*36/0	[0.50]	Soil Mechanics
ENGG*4330	[0.75]	Air Pollution Control
ENGG*4340	[0.50]	Solid and Hazardous waste Management
ENGG*43/0	[0.75]	Urban Water Systems Design
0.50 restricted ele	ctives	a
Semester 8 - Re	gular or (Co-op
ENGG*4130	[1.00]	Environmental Engineering Design IV
ENGG*4260	[0.75]	Water and Wastewater Treatment Design
GEOL*3060	[0.50]	Groundwater
0.50 restricted ele	ctives	
Restricted Elec	tives	
Environmental eng	gineering st	udents must complete the following restricted
	-	

electives (see Program Guide for more information). A maximum of three 1000 level electives is allowed. Restricted electives must include:

- 2.00 credits in Complementary Studies (Students need to take 0.50 credits from each of the three sub-lists noted in the Program Guide. The remaining 0.50 credits can be taken from any Complementary Studies sub-list.)
- 1.50 credits in Environmental Engineering electives (if BIOL*1030 is selected in Semester 3, then BIOL*1040 must be selected from the list in the Program Guide).

Minor (Honours Program)

Students must be registered in the B.Eng. degree program to apply for a Minor in Environmental Engineering.

The minor can be satisfied by taking the following additional courses:		
BIOC*2580	[0.50]	Introductory Biochemistry
CHEM*3360	[0.50]	Environmental Chemistry and Toxicology

ENGG*3180	[0.50]	Air Quality
ENGG*3590	[0.50]	Water Quality
ENGG*4260	[0.75]	Water and Wastewater Treatment Design
GEOG*1300	[0.50]	Introduction to the Biophysical Environment
MICR*1020	[0.50]	Fundamentals of Applied Microbiology
MICR*4180	[0.50]	Microbial Processes in Environmental Management
One of:		
ENGG*2560	[0.50]	Environmental Engineering Systems
ENGG*2660	[0.50]	Biological Engineering Systems I
One of:		
ENGG*3470	[0.50]	Mass Transfer Operations
ENGG*4330	[0.75]	Air Pollution Control
ENGG*4340	[0.50]	Solid and Hazardous Waste Management

Students must select an environmental application project for the design course in the student's major program.

Water Resources Engineering Program Regular and Co-op (WRE/WRE:C)

School of Engineering, College of Physical and Engineering Science

Water resources engineering focuses on the use and management of land and water resources in rural and urban watersheds. The hydrologic and hydraulic behaviour of watershed flow systems is combined with engineering science and. Water management includes flood prevention, warning and control; drainage; design of natural channels; irrigation; and erosion prevention and control. The supply of water for municipal, industrial and agricultural purposes is considered in the context of resource conservation. Identification of potential point and diffused sources of pollutants is used to develop efficient, environmentally sustainable and economical methods to preserve high-quality water to sustain human life and water-dependent ecosystems.

Major (Honours Program)

was selected

Semester 1 - 1	Regular or	• Со-ор
CHEM*1040	[0.50]	General Chemistry I
CIS*1500	[0.50]	Introduction to Programming
ENGG*1100	[0.75]	Engineering and Design I
HIST*1250	[0.50]	Science and Society Since 1500
MATH*1200	[0.50]	Calculus I
Semester 2 - 1	Regular or	· Со-ор
CHEM*1050	[0.50]	General Chemistry II
ENGG*1210	[0.50]	Engineering Mechanics I
ENGG*1500	[0.50]	Engineering Analysis
MATH*1210	[0.50]	Calculus II
PHYS*1130	[0.50]	Physics with Applications
Semester 3 - 1	Regular or	· Co-op
COOP*1100	[0 00]	Introduction to Co-operative Education
ENGG*2100	[0.75]	Engineering and Design II
ENGG*2120	[0.50]	Material Science
ENGG*2400	[0.50]	Engineering Systems Analysis
GEOG*2000	[0.50]	Geomorphology
MATH*2270	[0.50]	Applied Differential Equations
MICR*1020	[0.50]	Fundamentals of Applied Microbiology
Semester 4 - 1	Regular or	· Со-ор
ENGG*2230	[0.50]	Fluid Mechanics
ENGG*2450	[0.50]	Electric Circuits
ENGG*2550	[0.50]	Water Management
ENGG*2560	[0.50]	Environmental Engineering Systems
MATH*2130	[0.50]	Numerical Methods
STAT*2120	[0.50]	Probability and Statistics for Engineers
Semester 5 - 1	Regular or	• Со-ор
ENGG*3240	[0 50]	Engineering Economics
ENGG*3260	[0.50]	Thermodynamics
ENGG*3590	[0.50]	Water Quality
ENGG*3650	[0.50]	Hydrology
ENGG*3670	[0.50]	Soil Mechanics
0.50 restricted e	electives	
Semester 6 - 1	Regular / S	Semester 7 - Co-op
ENGG*3100	[0.75]	Engineering and Design III
ENGG*3430	[0.50]	Heat and Mass Transfer
GEOL*3060	[0.50]	Groundwater
1.50 restricted e	electives	
Semester 7 - 1	Regular / S	Semester 6 - Co-op
ENGG*3340	[0 50]	Geographic Information Systems in Environmental
2.100 3340	[0.50]	Engineering
ENGG*4250	[0.75]	Watershed Systems Design
ENGG*4360	[0.75]	Soil-Water Conservation Systems Design
ENGG*4370	[0.75]	Urban Water Systems Design

0.50 restricted electives

Semester 8 (Winter) Regular or Co-op

ENGG*4150 [1.00] Water Resources Engineering Design IV 1.50 restricted electives

Restricted Electives (see Program Guide for more information)

- 2.00 credits in Complementary Studies (Students need to take 0.50 credits from each of the three sub-lists noted in the Program Guide. The remaining 0.50 credits can be taken from any Complementary Studies sub-list.)
- 1.00 credits in Water Resources Engineering electives
- 0.50 credits in Environmental electives
- 0.50 credits in Water Resources electives