A FORMAL CSP FRAMEWORK FOR MESSAGE-PASSING
HPC PROGRAMMING

J. Carter, W.B. Gardner
Department of Computing and Information Science
University of Guelph
Guelph, ON, N1G 2W1, Canada
{jcarter,gardnerw } @uoguelph.ca

Abstract

To help programmers of high-performance computing
(HPC) systems avoid communication-related errors, we employ
a formal process algebra, Communicating Sequential Processes
(CSP), which has a strict semantics for interprocess communi-
cation and synchronization. Verification tools are available for
CSP-specified programs to prove the absence of failures such
as deadlock, and to explore potential multiprocess interactions.
By introducing a CSP abstraction layer on top of the popular
MPI message-passing primitives, we create a framework, called
CSP4MPI, designed to largely hide the complexity of parallel
programming for HPC.

CSP4MPI is comprised of a C++ class library that provides
a CSP-based process model, and a “cookbook” of candidate
solutions for HPC programmers not trained in CSP. Developers
can prototype their systems using CSP, and use verification
tools to examine possible points of failure before implementing
via the CSP4MPI library. Alternatively, they may choose an
existing, verified solution from a number of common parallel
application archetypes. By using CSP4MPI, HPC developers
leverage the benefits of formal specification and verification in
their work, in addition to obtaining an alternate method to
developing HPC applications.

Keywords: HPC, MPI, parallel patterns, CSP, selective for-
malism.

1. Introduction

High-performance computing (HPC) is typically based on
clusters of computer workstations. Clustering makes available
computational resources on par with the world's biggest super-
computers. However, researchers wishing to tap this power face
a considerable challenge. It involves mastering the program-
ming tools for the creation and control of parallel processes on
distributed hosts. A popular package for HPC is Message Pass-
ing Interface (MPI) [1, 2], whose application program interface
features over 150 functions—a significant learning curve. A
seasoned concurrent programmer has experience that assists in
recognizing and minimizing overhead in parallel computations,
such idleness, extraneous computation, and unnecessary com-
munication. But time spent translating a sequential algorithm to

a parallel algorithm is greater for a researcher lacking back-
ground in algorithms and parallel programming. Such research-
ers do not always have the benefit of a computer science
background, and so may be ill-equipped to confront common
multiprocessor programming hazards such as deadlocks and
race conditions.

We present an alternate route to development of parallel
applications for MPI clusters by means of the process algebra
Communicating Sequential Processes (CSP) [3]. CSP as a spec-
ification language offers a comfortable level of abstraction
when placed alongside syntax-rich programming languages.
The ability to formally verify correctness (such as the absence
of deadlock) in CSP is a virtue, saving execution time spent
running problematic solutions on machines with many users
vying for scheduling.

Our tool for HPC programming, called CSP4MPI, is built
upon a library of previously verified communication patterns
[4] to which users can connect custom functions that perform
useful calculations. These efficient patterns help to maximize
the computation to communication ratio [5], the metric by
which one judges the effectiveness of a parallel application
against its sequential counterpart. For novice HPC program-
mers, this saves development efforts spent on inefficient imple-
mentations, and time spent tracking down difficult
communication and synchronization errors.

Alternatively, users knowledgeable in CSP have the ability
to create their own patterns. In either case, the CSP-specified
code constitutes a control backbone that invokes user-coded
functions which carry out the desired calculations. This
arrangement—mixing a formally-specified control structure
with non-formal program code—is called selective formalism,
and is key to our approach [6].

In the following section, we motivate our solution by focus-
ing on the problem of communication errors in parallel applica-
tons. Then we explain how our solution is based on selective
formalism, as specifically applied in the context of MPI pro-
gramming. We show how an HPC program utilizing CSP4MPI
works, and explain how both novice HPC programmers and
developers experienced with CSP can take advantage of our
approach. Finally, we discuss the prospects for further automat-
ing programming with CSP4MPI in the future.

2. Errors in Parallel Applications

In presenting arguments for the application of CSP to HPC

computing, we observe two types of errors that arise through
incorrect parallel programming: computational errors and com-
munication errors.

2.1. Computational Errors

A computational error is a flaw in a section of code that
yields an incorrect result. Culprits for computational errors
range from using the assignment ('=") operator to test for equal-
ity, operator precedence issues, overflow errors, or numerical
precision errors due to improper floating point calculations. In
most cases, computational errors cause similar (if not identical)
results during multiple executions of the program, making tradi-
tional debugging techniques, such as the introduction of print
statements or inspection via a debugger, an effective means for
diagnosis.

2.2. Communication Errors

The second, and more insidious, type of error in parallel pro-
gramming is the communication error. We define this to be an
error arising in interprocess communication or synchronization
leading to premature termination of execution. Communication
errors are the result of undesirable conditions such as deadlock,
livelock, or race conditions, resulting from incorrectly designed
process synchronization, unrealistic assumptions about commu-
nication buffer sizes, or incorrect use of blocking operations.

In our experience, communication errors require greater
time and knowledge to identify and debug. A challenge to com-
munication error debugging is that such errors may not be
present in successive executions due to variables such as buffer-
ing or scheduling. The nondeterministic nature of communica-
tion errors causes them to be difficult to pinpoint, and frustrates
developers unaccustomed to concurrent programming. Our the-
sis is that by building HPC applications with the aid of a formal
semantics for interprocess synchronization and communication,
developers should be able to build programs whose communi-
cations are “correct by construction.”

3. CSP and Previous Work

CSP is a process algebra for describing systems composed
of a number of parallel components, and specifying the ways in
which they may communicate and synchronize. CSP is formally
verifiable using a number of software tools. For example, For-
mal Systems Europe's FDR2 [7] is able to prove the absence of
deadlock, livelock, and non-determinism, and make assurances
about process behavior by examining a system’s traces and fail-
ures for safety properties. Our research has used CSP as an
input language for C++ software synthesis via the framework
CSP++[8, 9].

Aside from our own prior experience, years before the
advent of MPI, Mazzeo et al [10] suggested using CSP as a
means to program a cluster of heterogeneous workstations.
Explaining the development of their DISC system, they argued
in favour of CSP as follows:

¢ CSP is simple but powerful.

e CSP is not restricted to any usage patterns, such as master-
slave.

e CSP allows for an object-oriented style of component com-
position and reuse, and abstracts away details such as sched-
uling or resource contention.

¢ CSP constructs can be created using existing programming
languages.

The DISC system implements clustering using the CSP
computational model as a means for programming parallel
applications on a network of heterogeneous UNIX worksta-
tions. DISC allows for an application to be developed on a sin-
gle workstation and be executed using computational resources
of other DISC-enabled machines on its local area network.
DISC development is conducted via a custom parallel compiler,
linker, run-time environment, system monitor, profiler, debug-
ger, makefile generator and graphical user interface.

The DISC system was developed with the intention of sup-
porting a developer through the entire development cycle, as
opposed to merely offering a parallel compiler and run-time
environment. DISC computation is performed through a set of
processes, in turn composed of events, each representing a step
in a calculation. Interprocess communication is performed
exclusively via channels, noting that DISC made use of many-
to-one channels (an extension of the CSP channel definition).
DISC also offers channel inheritance whereby a child process
has access to the channels of its parent process.

DISC is an undeniable ancestor of contemporary clustering
and grid computing packages, of special interest due to the
usage of CSP. In that period, predating joint standards such as
PVM or MPI, researchers were creating parallel programming
languages based on their platform and computing model of
choice.

DISC contrasts with CSP4AMPI in that it does not partition
between computation and communication, but rather combines
the two through its syntax. Instead of our selective formalism
approach, DISC merely provides an infrastructure through
which communication and synchronization must take place
with calculation interspersed throughout program code. Com-
pared to contemporary parallel programming methods—PVM,
MPI, OPENMP—DISC is considerably more heavyweight and
platform dependent.

4. Applying CSP to HPC

4.1. Selective Formalism

After settling on a formal method, the next question is how
to inject the formalism so as to obtain the benefits of its seman-
tics, but without creating fresh drawbacks. That is, given the
learning curve that novice HPC programmers already face, we
do not want to add the burden of learning a formal notation.

Formal methods are frequently applied in industries building
mission-critical systems where insufficient verification can risk

Application Framework
connects formal notation & programming language

Application Framework
implements components
necessary for synthesis of

formal notation

Application Framework is
implemented in chosen
programming language

Selective
Formalism

Formal

Programming
Notation >

Language

Developer chooses a point on
the spectrum between formal and
informal specification

Fig. 1. Ingredients of Selective Formalism

human injury or large-scale financial loss. Software developers
working in such areas must prove a system to be correct and
safe. In contrast, most software development is carried out
unfettered by formal specification and verification, in a process
that is likely faster and cheaper than the formal route, but not
necessarily more correct.

Figure 1 portrays a spectrum of software design rigour that
ranges between two poles. On the right is non-formal software
development in a conventional programming language. The
polar opposite, on the left, is development using rigorous speci-
fication and verification methods based on a formal notation.
Striking a balance between these two poles is possible via
“selective formalism.”

Selective formalism allows developers to select critical
components of a system to be specified formally, and secondary
or non-critical components to be coded using a conventional
non-formal programming language. Developers select a point
on the continuum between total formal specification and non-
formal development that is appropriate to their project.

The three ingredients of selective formalism, illustrated in
Figure 1, are:

» aformal notation capable of expressing the system.

e aprogramming language of interest to developers and practi-
cal for the application.

* an application framework to connect constructs from the for-
mal notation to the chosen programming language.

Through selective formalism we partition the realm of com-
munication and computation, and off-load the responsibility of
designing communication patterns from the novice HPC devel-
oper.

4.2. Anatomy of a CSP4MPI Application

Referring to Figure 2, the first level of a CSP4MPI applica-
tion is the physical interconnect. Interconnects range from off-
the-shelf Ethernet networks to low-latency direct memory
access (DMA) products. Given that CSP4AMPI is not tied to any
particular interconnect type, a discussion of interconnects is
outside the scope of this work. Next to the interconnect layer is
the MPI implementation, which may have special configura-
tions or optimizations for the interconnect or processor archi-
tecture. Many MPI implementations are available, but our
development efforts have focused on LAM/MPI [11], due to our
available in-house HPC systems.

Cluster Interconnect | | |

MP! Implementation

CSP Control Backbone

]

=

(T 1

NRYA

User Coded Functions

Fig. 2. CSP4MPI Architecture

CSP4MPI builds on the previous two layers, common to any
message passing cluster. On top of the MPI implementation is
the “CSP Control Backbone” layer comprised of a C++ class
library, implementing CSP primitives such as processes, events,
channels and their respective operations. A process describes a
sequence of events to take place, including interprocess com-
munication, synchronization or the calling of user-coded func-
tions (discussed next). An event is a single atomic operation
executed by a process, and multiple processes may rendezvous
on the same event, as a form of barrier synchronization similar
to MPI Barrier(). A channel is an unbuffered, unidirectional,
point-to-point communication mechanism with “producer and
consumer” end points. Channels are the sole interprocess com-
munication mechanism used by CSP, and likewise the only
interprocess communication method available through
CSP4MPL.

CSP stipulates that a process must recurse as another pro-
cess, including SKIP which describes successful termination, or
STOP which is used to denote a state in which no additional
progress may be made. For CSP4AMPI, SKIP and STOP serve to
force a node to wait for its peer nodes to complete, upon which
execution of the entire application is complete.

Aside from CSP primitives, the CSP4MPI control backbone
layer implements a number of utility classes, the largest being
the Environment class that maintains the process table, variable

space, synchronization, and event notification for every compu-
tational node in the system.

Under the control of the CSP control backbone are user-
coded functions a developer has added to an implementation.
user-coded functions are implemented as function pointers
attached to events. user-coded functions are called when the
corresponding event occurs in the control backbone, reading
and writing data from the node's individual process space.

Since CSP4MPI is layered upon the MPI library, a
CSP4MPI program has many similarities to an MPI program.
Next, we describe what happens when a CSP4MPI program is
executed.

The following steps occur for all nodes:

e Step 1. Environment Initialization
* MPI is initialized with command line arguments.
* Nodes are assigned individual names.

* CSP channels necessary for communication are created
between the nodes previously named.

* A separate communicator group is created for system-wide
event notification. This offers a “priority lane” for such
notification.

* Step 2. Process Construction and Registration
* Empty processes are created with individual names.
* Events and channel I/O operators are added to processes.
* User-coded functions are attached to events.

* Synchronization events are inserted where required
between multiple processes.

» Step 3. Execution

* Individual nodes begin execution with the process for
which they are named. Execution continues until the pro-
cess (and any following processes) terminate.

e Step 4. Environment Finalization

¢ As nodes terminate, destructors are called, and
MPI_Finalize() is invoked.

5. Using CSP4MPI

CSP4MPI is aimed at two user groups, shown to the left in
the use case illustrated in Figure 3.

5.1. Novice HPC Programmer

The novice HPC programmer needs no prior CSP experi-
ence to benefit from our approach, as CSP is kept “under the
hood,” so to speak. From the library of control backbone tem-
plates, users select appropriate templates for their problems and
these control backbones lay out the interprocess communication
and synchronization to be used.

Once a communication template is in place, the novice HPC

CSP4MPI Development

Selects control backbone
from library of readymade
s.

CSP4MP| control backbone template:

7)

Creates User Coded Functions
to perform ‘work"

N

Movice HPC
Programmer

X

CSP Developer

Compiles and Links backbone,
and User Coded Functions.

Executes CSP4MP| Program

Creates control backbone : :
using CSP.

CSP Developer
using proposed
Verifies backbone using enhancements

CSP verification tools

Manually translates control
backbonefrom CSP to CSP4MPI

Translates CSP control backhone
from CSP to CSP4MPlvia automatic

translation tool.

K

Fig. 3. CSP4MPI Developer Use Case Diagram

programmer creates user-coded functions in C/C++ to perform
the calculations or “real work.” The developer compiles the
functions along with the selected control backbone, creating an
HPC application.

User-coded functions are written in a manner akin to func-
tions written for a non-HPC program—i.e., sequential execu-
tion—with the stipulation that user-coded functions may not
“go behind the back™ of the control backbone and perform
interprocess communication or synchronization on their own.
Through this restriction, and in moving all communication and
synchronization to a formally-verified control backbone, the
novice HPC programmer is relieved from having to debug com-
munication errors. Any remaining computational errors can be
found using traditional debugging techniques.

5.2. CSP Developer

It is unlikely that a library of control backbones is capable of
satisfying the needs of advanced HPC developers, so those
wishing to create their own control backbones are free to do so.
A previous knowledge of CSP is necessary, making this
approach attractive to existing CSP users.

The current design flow for a CSP developer begins with the
specification of the control backbone in CSP. Given a CSP
specification, the developer carries out simulation and refine-
ment. When satisfied with the functionality and properties of
the CSP backbone, the developer implements the CSP specifi-
cation in the CSP4MPI library, and adds the user-coded func-
tions necessary for the application.

The process of hand translating from a CSP specification is
the weakest link in the present CSP4MPI design flow, and this
step may potentially introduce errors due to improper transla-
tion. Our existing CSP++ tool boasts automatic translation from
CSPm (a machine readable dialect of CSP) to C++, and this
capability will be incorporated as the CSP4MPI library matures.

The use case for this proposed future enhancement is shown on
the right side of Figure 3.

6. Status of CSP4MPI

6.1. CSP4MPI Case Studies

At present two simple case studies exist, implementing two
common parallel processing patterns [4]. The first of which is
the master-worker pattern. The master node distributes work
from an input file among a finite number of worker nodes, col-
lecting and combining worker results as they become available.
Communication is provide via the CSP verified control back-
bone. Values are read from an input file, processed on nodes,
combined and outputted using user-coded functions.

The second case study is a pipeline parallel implementation,
whereby several stages are composed in sequence. The initial
stage reads data from an input file, and the final stage outputs to
a results file (both stages make use of user-coded functions for
this). Intermediate stages process data using individual user-
coded functions to perform their processing tasks. As with the
master-worker pattern, communication between stages is
derived from a formally verified CSP model.

6.2. Future Work

There are three areas that stand to be expanded for the
CSP4MPI project:

e CSP4MPI will require an extensive survey of patterns for
parallel programming, and a set of relevant communication
templates constructed along with documentation and code
examples outlining recommended usage of templates. These
templates serve as communication backbones for developer
projects, and therefore must be formally verified using the
existing CSP tools.

* At present, CSPAMPI has little performance optimization in
place. As the code base matures, some benchmarking on a
production cluster will be performed, followed by necessary
code optimization and improvements. A comparison of
CSP4MPI solutions vs. "‘pure' MPI solutions is also planned.

* As the CSPAMPI implementation solidifies, there are pros-
pects for retargeting CSP++’s CSPm-to-C++ translator to
generate code for CSPAMPI. This will eliminate the need for
hand-translating parallel patterns from CSP into C++.

* Finally, CSP4MPI is built exclusively using LAM/MPI [11].
Testing with alternate MPI libraries will be conducted.

7. Conclusion

We have presented our work to date on the application of
communicating sequential processes to message-passing high
performance computing. Our selective formalism approach par-
titions developer errors into two domains, allowing traditional
debugging to take place for computational errors, and for bur-

densome communication errors to be avoided through the use
of a template library for novice HPC developers, while offering
the assurances of formal specification and verification of com-
munication to advanced users.

Acknowledgements

The initial development work on CSP4MPI was carried out
on SHARCNet (Shared Hierarchical Academic Research Com-
puting Network).

References

[1] Message Passing Interface Forum. MPI: A Message
Passing Interface. In Supercomputing '93: Proceedings of
the 1993 ACM/IEEE conference on Supercomputing,
pages 878-883, New York, NY, USA, 1993. ACM Press.

[2] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard 1.1. June 1995. http://
www.mpi-forum.org/docs/mpi-11-html/mpi-report.html.

[3] C.A.R. Hoare. Communicating Sequential Processes.
Communications of the ACM, 21(8):666—677, 1978.

[4] B.L. Massingill, T.G. Mattson, B.A. Sanders. Patterns for
Parallel Programming. The Software Patterns Series.
Addison Wesley, Boston, MA, USA, 1st edition, Sept.
2004.

[5] B. Wilkinson, M. Allen. Parallel Programming:
Techniques and Applications Using Networked
Workstations and Parallel Computers (2nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[6] W.B. Gardner. Converging CSP Specifications and C++
Programming via Selective Formalism. Trans. on
Embedded Computing Sys., 4(2):302-330, 2005.

[7] Formal Systems Europe Ltd. FDR2 Homepage. March
2006. http://www.fsel.com/.

[8] W.B. Gardner. CSP++ Homepage. 2000. http://
www.cis.uoguelph.ca/ wgardner/. Research Link.

[91] W.B. Gardner. CSP++: How Faithful to CSPm? In
Communicating Process Architectures 2005 (WoTUG-27),
Concurrent Systems Engineering Series, pages 129—-146.
10S Press, 2005.

[10] A. Mazzeo., S. Russo, G. Ventre. Using CSP languages to
Program Parallel Workstation Systems. Future Gener.
Comput. Syst., 8(1-3):149-163, 1992.

[11] LAM/MPI Parallel Computing Homepage. March 2006.
http://www.lam-mpi.org/.

