
Using the Pilot Library to Teach Message-Passing Programming

William B. Gardner and John D. Carter
School of Computer Science

University of Guelph, ON, Canada

{gardnerw,jcarter}@uoguelph.ca

Abstract—Message-passing is the staple of HPC codes, and MPI

has long occupied the place of HPC's default programming par-

adigm, thus it would seem to be the natural choice for instruct-

ing undergraduates. Nonetheless, MPI is a low-level API,

complex and tricky to use, with many pitfalls awaiting the inex-

perienced. The Pilot library was invented as an alternative HPC

programming model for C and Fortran. Pilot-based codes, using

a process/channel application architecture borrowed from Com-

municating Sequential Processes (CSP), can avoid some catego-

ries of errors, and the Pilot library with its integrated deadlock

detector provides extensive checking and diagnosis of usage

problems, which is especially important for students running

cluster programs in their typical low-visibility environment with

limited debugging tools. This paper gives an overview of pro-

gramming in Pilot, with its compact API of point-to-point and

collective operations. It explains reasons for preferring it as an

introductory message-passing technique, describes free

resources available to the instructor, and relates experiences of

using Pilot with undergraduates over five years, including stu-

dent reactions. Pilot is now available as free and open source.

Keywords-Parallel programming; MPI; high-performance

computing; CSP; deadlock detection; novice programmers

I. MOTIVATION

Educating students about high-performance computing

(HPC) will typically involve training in message-passing pro-

gramming. The alternative is to utilize a higher-level lan-

guage or library that hides the message communications,

such as Hadoop MapReduce, or a Partitioned Global Address

Space (PGAS) language like Unified Parallel C or Co-array

Fortran. But these are specialized techniques, whereas mes-

sage-passing is as fundamental to non-shared memory HPC

as global variables (and the methods of preventing corruption

and conflicts) are to shared-memory computing. Therefore, it

is hard to imagine that HPC education could leave aside mes-

sage-passing programming.

In a typical North American undergraduate context

where students have learned C, C++ and/or Java, either C or

C++ gives them immediate access to the standard MPI library

[1]. It is more difficult to justify Java for this purpose because

(a) presently there does not seem to be a widely-accepted

message-passing library for Java on par with MPI, and (b)

passing data structures commonly used in HPC such as multi-

dimensional arrays is difficult to do efficiently. Consultation

with our Southern Ontario HPC consortium, SHARCNET,

revealed that the vast majority of codes are in C, with Fortran

bringing up second place (stemming largely from legacy

codes). Thus, teaching HPC programming in C (or C++)

using MPI would appear to be the obvious choice. Textbooks

such as the one we use for the Parallel Programming course at

the University of Guelph have a chapter on MPI [2].

And yet, for beginning HPC programmers, diving right

into MPI presents a number of challenges that educators

would do well to note:

1. The standard API is vast and complex. MPI-1 alone has

over 120 functions, and MPI-2 brought the total to over

500. One fundamental operation such as MPI_Send can

have many subtle variants: Bsend, Ssend, Rsend, Isend,

Ibsend, Issend, and Irsend [3]. Students need careful guid-

ance in sticking to a safe and relevant subset of functions

to stay out of trouble. For example, McGuire [4], citing

MPI’s multiplicity of functions, “more than any one per-

son will likely learn and use,” with “typically long and rel-

atively complicated” parameter lists, put a simplified

interface onto eleven chosen MPI functions. Some have

identified only six “golden” functions as essential [5], and

placing such restrictions can counteract this challenge.

2. MPI confusingly mixes two programming models, SPMD

(single program, multiple data) and MPMD (multiple pro-

grams, multiple data). This is responsible for program-

mers’ peppering of codes with conditionals like “if

(rank==0)” and for counterintuitive use of collective func-

tions. Students legitimately ponder why a broadcast

receiver must call MPI_Bcast, and so on.

3. MPI messages are addressed using combinations of ranks,

tags, and communicators, and it’s up to the programmer

how to utilize them in a given problem. Coding mistakes

and logic errors can result in messages going astray to pro-

cesses that are not expecting them, with, at best, some pos-

sibly useful runtime error message, and at worst, mystery

deadlocks. MPI’s “cryptic error messages” and “lack of

stable and useful debugging tools” were cited in 2001 as

barriers to training inexperienced programmers [6].

4. Deadlock causes the job to hang, wasting cluster resources

while running out its time limit, or putting students in a

dilemma: is it just running longer than expected, or should

it be killed, likely leaving no evidence for what caused the

deadlock? In principle, third-party deadlock checkers such

as Umpire [7] are available, but our experience is that

students tend to resist using additional tools with their

own learning curves (tool resistance issue raised re MPI

debugging [8]).

5. At program completion, MPI may not disclose that there

are undelivered messages, yet they point to faulty design

and/or logic errors that should be corrected.

It was in recognition of the above pitfalls that the Pilot

library [9] was invented. It was intended to be, first and

foremost, an educational tool to introduce students to mes-

sage passing, adequate for assignments and projects on

HPC clusters. For many students who go on to careers

where multicore computers are ubiquitous, Pilot will have

provided a sufficient exposure to the principles and practice

of message passing, and will have served as a foil for com-

paring and contrasting that approach with shared-memory

programming techniques. For others who go on to write or

maintain “production codes” in HPC shops, Pilot will serve

as a convenient stepping-stone to MPI programming.

Pilot’s concepts are readily transferable to MPI, since it rep-

resents a subset of what one can accomplish with MPI.

Pilot is not a de nouveau message passing library. On

the contrary, it is a thin layer on top of conventional MPI;

that is, it uses MPI as the transport mechanism. Since MPI

is a standard, this makes Pilot very portable and able to

work with any underlying MPI implementation that may

happen to be installed on one’s cluster. Pilot itself is written

in C, but it also has a Fortran API that calls the C functions

via the ISO_C_BINDING module. The next sections give

an overview of the Pilot library and a sample of how to use

it. At the end, we will return to the above five challenges

and explain how Pilot addresses them.

II. OVERVIEW OF THE PILOT LIBRARY

Pilot is not an ad hoc simplification of MPI. Rather, it

was intentionally based on Hoare’s process algebra Com-

municating Sequential Processes (CSP) [10], where compu-

tation is specified in terms of processes that do not share

memory, and communicate strictly in terms of synchronous

messages over unidirectional channels. Imposing this kind

of theoretical framework—really a layer of abstraction—

onto MPI is easy, and at one stroke it eliminates many ways

of inadvertently misusing MPI, though at the cost of giving

up some generality and incurring slight overhead. Pilot

users need not know anything about CSP; it simply hovers

in the background providing rigour to the library’s design.

A Pilot programmer deals with just one programming

model, MPMD, where each MPI process (standing for a

CSP “process” and running as an operating system process)

executes a designated C function. This approach can be

called function level parallelism. It is precisely how

Pthreads works (see pthread_create), a library that students

will likely be familiar with. Function level parallelism has

also been recently utilized by the fine-grain MPI (FG-MPI)

library [11] as its basic unit of “process” execution.

Thus, the first step in a Pilot program is defining which

functions should be executed by MPI processes. The next

step is defining channels over which the programmer

allows the processes to communicate. Channel variables are

utilized as arguments to PI_Read and PI_Write functions in

lieu of ranks, tags, and communicators. During execution, it

is trivial for Pilot to trap any erroneous attempts to circum-

vent these predefined channels, thus preventing common

communication errors. At the same time, Pilot can also log

to a file all channel communications as a debugging aid and

keep a dependency matrix of process/channel communica-

tions to detect deadlocks. The latter is far simpler than the

problem of generalized deadlock detection for MPI [12],

since the scope of possible process interactions in a Pilot

program is greatly circumscribed.

In addition to the functions designated to run as pro-

cesses, the C main() function continues execution as MPI

rank 0, also known as PI_MAIN, and is appropriate to use

as a master process in master/worker patterns.

The chief capability missing from a pure process/chan-

nel approach is collective functions. In principle, students

can get along without those, but teaching them is a corner-

stone of HPC programming and is often a doorway into the

underlying MPI library’s most efficient operations. The

Pilot approach to collective functions—which does not

break the underlying CSP formalism—is to allow groups of

channels that have a common process endpoint (either

sending end or receiving end) to be designated as a bundle.

The bundle then forms an argument to collective functions:

One can broadcast onto a bundle or reduce from a bundle.

But instead of programmers awkwardly calling “broadcast”

or “reduce” in processes on the non-common “rim” of the

bundle, they call the usual PI_Read and PI_Write opera-

tions on their respective channels.

Even with collective operations—including broadcast

and reduce, scatter and gather, plus “select” (allowing, like

the POSIX select system call, a process to detect which

channel in a bundle is ready for reading)—and a handful of

utility functions (such as obtaining timing data) the entire

Pilot API comprises a mere 24 functions (see Table I).

Pilot has other distinctive features that will be illus-

trated below, all designed to ease the learning curve for stu-

dents writing and debugging their first cluster programs: (1)

syntax deliberately based on C’s stdio.h fprintf and fscanf,

specifying first the channel or bundle pointer (like FILE*),

then the data format specification string, and finally the out-

put values or input variables; (2) extensive runtime diag-

nostics that identify errors to the level of source file name

and line number; and (3) integrated deadlock detector

enabled by a command line option that prints out what all

parties to a deadlock were doing. Programmers have the

option of giving meaningful names to processes, channels,

and bundles, which increases the lucidity of error messages.

As will be seen below, the stdio-like syntax with its

format string is very powerful: It allows a single Pilot call

to accomplish what would take several calls in MPI, and

eases communication of variable length data. There is even

a format code that automatically allocates an array of the

proper length to hold incoming data.

One feature that Pilot lacks, perhaps surprisingly, is a

barrier. We were advised by our HPC consortium that

beginning programmers tend to use barriers as a crutch,

when in most cases there is no need for them. This is

because, in contrast to shared memory communication (via

global variables), message passing accomplishes communi-

cation and synchronization at the same time. Students need

to grasp this inherent power of messages, and taking away

barriers aids this realization. Furthermore, since collective

functions have a group synchronizing effect, they can be

used to achieve a barrier’s purpose when warranted.

The simplifications of Pilot do result in some weak-

nesses compared to MPI:

1. Using Pilot it is less natural to create a pure SPMD code

in which the “main” process is doing a full share of the

work. Furthermore, there are no Pilot functions like

MPI_Allreduce which allow sending processes to also

get the reduced value, as that would violate unidirec-

tional channels. This effect could be accomplished,

albeit less efficiently, by broadcast following reduce.

2. Pilot has (at present) limited asynchronous capabilities

with no functions corresponding to MPI_Isend and

MPI_Irecv. However, PI_Write does call MPI_Send

“under the hood,” which does not necessarily block

(depending on several factors internal to MPI such as

message size). And one need not call PI_Read when

there is a chance of its blocking. Instead, the process can

probe an individual channel for data using

PI_ChannelHasData, block until some channel in a bun-

dle is ready for reading using PI_Select, or merely probe

a bundle without blocking using PI_TrySelect. Using

these tools, Pilot programmers can achieve a substantial

degree of overlapping computation with communication.

3. Pilot uses a static process/channel architecture that can-

not be altered at runtime. Also, creating complex pat-

terns of channels (e.g., for a 2D or 3D grid layout of

processes) can get messy compared to simply addressing

rank numbers as with MPI.

What’s more, students may be unaware that lengthy

format strings trigger the sending of multiple messages, and

that they could reduce communication penalties by packing

and sending a single array. This is a matter of training. For

beginning HPC programmers, the above were not consid-

ered to be significant drawbacks.

The next section walks through a skeleton Pilot pro-

gram in C. It also lists all the categories of errors that Pilot

detects at run time, depending on which level of error

checking is enabled.

III. SAMPLE CODE

The program in Figure 1 is adapted from one of the

labs that is available from the Pilot website. Including

“pilot.h” makes the API available. As written, this program

assumes a fixed number (5) of worker processes, and the

student is told how to make it scalable by discovering the

number of available processes at run time (return value

from PI_Configure) and dynamically allocating the arrays

of process and channel variables.

Looking first at main(), Pilot applications execute in

two distinct phases: The first is the configuration phase,

initiated by calling PI_Configure (which also interprets

command line options), where the static application archi-

tecture, comprising processes, channels, and bundles, is

defined by calling PI_CreateXXX functions. Creating a

process means pointing to a function for it to run during the

execution phase, here workerFunc. The same function body

can be associated with multiple processes, and an integer

index parameter can be passed so it can easily identify its

own instance, very much in the same style as POSIX

pthread_create. A second void* parameter is available for

optional use, here filled with NULL. Channels are created

by specifying their “from” and “to” processes. This sample

also creates two bundles: one for broadcasting to the work-

ers, and one for “selecting” which result channels have data

to read. The configuration phase is concurrently executed

by every MPI process in the cluster, resulting in the con-

struction of equivalent internal tables on the various proces-

sors, regardless of their respective word length, data

alignment, and endian properties, so that Pilot codes can

TABLE I. COMPLETE PILOT API (V3.0)

Configuration Phase Execution Phase

PI_Configure PI_StartAll

PI_CreateProcess PI_StopMain

PI_CreateChannel PI_Write

PI_CreateBundle PI_Read

PI_CopyChannels PI_ChannelHasData

Utilities PI_Select

PI_Set/GetName PI_TrySelect

PI_GetBundleChannel PI_Broadcast

PI_GetBundleSize PI_Scatter

PI_Start/EndTime PI_Gather

PI_Abort PI_Reduce

PI_SetCommWorld (for running IMB benchmarks)

run on hybrid clusters.

The execution phase commences with PI_StartAll

making the flow of control diverge: Each process invokes

its associated function, except for MPI rank 0 (PI_MAIN),

which has no additional associated function and simply

continues executing statements in the main() function.

In the sample code, PI_MAIN (here serving as the

master) fills an array with random numbers and broadcasts

it to all the workers. Note how two broadcasts are combined

in a single PI_Broadcast format string: The first “%d”

sends the integer W. The “%^d” format sends both the

length, NUM, and the numbers array of size [NUM] ints.

The master then settles into a result collection loop,

using PI_Select to find which result channel is ready for

reading next. PI_MAIN finishes by calling PI_StopMain,

which coordinates the shutdown of MPI with all workers.

Now looking at the worker function, it is written with-

out assumptions about the number of workers or size of the

data set. Note how it receives the broadcasted data by call-

ing PI_Read on its toWorker[index] channel. The for-

mat “%^d” tells PI_Read to allocate (storing the pointer in

variable buff) a right-sized array of ints to contain the

#include <stdio.h>

#include <stdlib.h>

#include "pilot.h"

#define W 5 // fixed no. of Workers

// arrays of process, channel, bundle pointers

PI_PROCESS *Worker[W];

PI_CHANNEL *toWorker[W];

PI_CHANNEL *result[W];

PI_BUNDLE *toAllWorkers, *allResults;

// no. of numbers to add up

#define NUM 10000

int workerFunc(int index, void* arg2)

{

int i, workers, size, myshare, mystart,

sum=0, *buff;

// get no. of workers, size of data set,

// and auto-allocated array

PI_Read(toWorker[index],

"%d %^d", &workers, &size, &buff);

// figure out myshare

myshare = size / workers;

mystart = index * myshare;

if (index == workers-1)

myshare += size%workers;

printf("Worker #%d signing on to do share of

%d!\n", index, myshare);

// add up my share and report sum

for (i=0; i<myshare; i++)

sum += buff[mystart + i];

free(buff); // allocated by %^d

PI_Write(result[index], "%d", sum);

return 0; // exit process function

}

int main(int argc, char *argv[])

{

int i;

// return no. of processes available

int N = PI_Configure(&argc, &argv);

// create Worker processes and channels

for (i=0; i<W; i++) {

Worker[i] =

PI_CreateProcess(workerFunc, i, NULL);

toWorker[i] =

PI_CreateChannel(PI_MAIN, Worker[i]);

result[i] =

PI_CreateChannel(Worker[i], PI_MAIN);

}

// create bundles for broadcasting, selecting

toAllWorkers = PI_CreateBundle(

PI_BROADCAST, toWorker, W);

allResults = PI_CreateBundle(

PI_SELECT, result, W);

// start execution (workerFunc gets control

// on its processor)

PI_StartAll();

// PI_MAIN continues

int numbers[NUM];// each element is 0-999

for (i=0; i<NUM; i++)

numbers[i] = (double)rand()*999.0/RAND_MAX;

// broadcast the work; W no. of workers, and

// numbers array (length NUM)

PI_Broadcast(toAllWorkers,

"%d %^d", W, NUM, numbers);

// collect the results using selection

int sum, total = 0;

for (i=0; i<W; i++) {

// find out which worker is done next

int w = PI_Select(allResults);

PI_Read(result[w], "%d", &sum);

printf("Worker #%d reports sum = %d\n",

w, sum);

total += sum;

}

printf("Grand total = %d\n", total);

PI_StopMain(0);// end program

return 0;

}

Figure 1. Data-parallel adding numbers

data, also storing the length in the size argument. It then

calculates the start and extent of its share of the array, adds

up its share, and reports the result via PI_Write on its

result[index] channel. The channel is part of the

selector bundle that PI_MAIN is monitoring with

PI_Select. A worker function exits simply by returning,

after which Pilot will terminate its MPI process.

It is easy to change the program to use a reduction: The

allResults bundle must be created with usage of

PI_REDUCE rather than PI_SELECT. In PI_MAIN the

collection loop becomes the single call:
PI_Reduce(allResults, “%+/d”, &total);

The reduction is indicated by inserting an operator and

slash before the data type. The corresponding PI_Write in

the worker function changes slightly to:
PI_Write(result[index], “%+/d”, sum);

The change is needed because the resulting call to

MPI_Reduce must specify the reduction operator. Forget-

ting to make this change will yield an error message.

The full range of format codes and reduce operators is

shown in Table II. Note that the format string (which can be

supplied by a variable, not necessarily a string literal) is

simply a convenient way to describe the data; it does not

imply that data is converted to text for transmission. Fixed

array length is specified by inserting an integer, e.g.,

“%100f” stands for 100 floats. Not shown are the special

format characters “*” and “^”. The star indicates that the

variable array length is supplied from the argument list,

e.g., (..., “%*f”, 100, floatarray), for both reading and

writing. The caret was illustrated in the sample code. The

“%s” format uses the same mechanism to communicate a

NUL-terminated C string with its length being determined

automatically via strlen. The reader is responsible for free-

ing arrays allocated by “^” and “%s”.

Utilizing the integrated deadlock detector is as simple

as adding the option “-pisvc=d” on the command line (i.e.,

mpirun...-pisvc=d). The deadlock detector does

consume an additional MPI process, so the number of pro-

cesses should be incremented (PI_Configure will not report

it as being “available” for a worker’s creation). Errors such

as circular wait will cause the program to abort with a diag-

nostic message identifying the deadlocked processes. For

example, suppose the programmer omits the PI_Read in

PI_MAIN’s collection loop. With MPI alone, the program

would likely exit normally after printing a bogus sum. But

the Pilot deadlock checker will note that there are outstand-

ing messages undelivered and print the following message:

BLOCKED: Process P2(0) called

PI_Write(C2:P2>main, "lab-sample-c:33")

Deadlock detected in Pilot process

main(0)!!! Process exiting leaves

earlier operation hung

“P2” is the default name for the second process created

in the configuration phase; it was started with argument 0.

At line 33, it wrote on “C2” the second channel created,

from P2 to PI_MAIN. Since main() exited without reading

that channel, the deadlock detector realized that the mes-

sage can never be received. If the programmer desires, pro-

cesses and channels can be relabelled with arbitrary names

by calling PI_SetName.

Pilot checks for errors depending on the level selected

by the programmer. This can be set by a global variable

(PI_CheckLevel) or a command line option

(-picheck=n). Level 1 is the default, checking for viola-

tions of function preconditions, I/O argument lists that do

not match their format strings, and for internal table corrup-

tion. During initial debugging, programmers may wish to

select Level 2, which requires more CPU and messaging

overhead but verifies that each reader and writer uses

matching format strings. Level 3, in addition, checks that

arguments where addresses are needed appear to be point-

ers, thus guarding against a common C-type error of coding

fscanf(..., var) instead of &var in input contexts, often

leading to a segmentation fault. Since data can look like a

valid pointer, this check is not fail-safe.

For example, if in the PI_Reduce call above, we acci-

dentally omit “&” the error message will enable the pro-

grammer to pinpoint the offending function:

main(0) @ lab-sample-code-red.c:97:

An argument that should be a location

(pointer) looks like a data value

Finally, to obtain a bit more run-time efficiency, Level

0 disables most checking except for function preconditions.

IV. USING PILOT IN A PARALLEL PROGRAMMING COURSE

Details concerning the University of Guelph course,

including the 12-week schedule of topics, organization

(assignments, term project, final exam), textbook, and par-

TABLE II. PILOT FORMATS AND REDUCE OPERATIONS

Pilot format C datatype symbol/ Operation

%c char max maximum

%hhu unsigned char min minimum

%d, %i int + sum

%hd short int * product

%ld long int && logical and

%lld long long int || logical or

%u unsigned int ^^ logical xor

“u” gives corresponding unsigned
integer types: hu, lu, llu

& bitwise and

%f float | bitwise or

%lf double ^ bitwise xor

%Lf long double mop user-defined

(MPI_Op)%b any

%s char*

%m user-defined (MPI_Datatype)

allel programming platforms, are available elsewhere [13].

Course prerequisites expect students to have passed our

operating systems and computer organization courses.

These ensure that they understand the concepts of OS pro-

cesses with disjoint address spaces, the resources they uti-

lize, forking and joining, memory caching, and at least a

light exposure to shared-memory programming with

Pthreads, including critical sections, mutexes, and the pro-

ducer/consumer pattern.

Pilot is used for the first assignment (before moving on

to shared memory techniques—pthreads and OpenMP). It

is introduced in two 90-minute lab sessions using the same

Powerpoint slides and hands-on labs that have been suc-

cessfully utilized in half-day tutorials presented at confer-

ences. This instruction, along with the textbook’s first four

chapters on parallel computing is sufficient to prepare stu-

dents to start working on the Pilot assignment. Absent the

OS background described above, one should teach at least

the concept of processes before running the Pilot tutorials.

Experience shows that the initial challenge for some

students is to realize that the Pilot processes do not share

memory and that messages are the sole means of communi-

cation. They may still have global variables in their pro-

grams—for example, PI_CHANNEL* variables assigned

by PI_MAIN and used in the process functions—but cannot

communicate between processes using them.

The nature of the Pilot assignment varies from year to

year, but it always involves a data parallel problem amena-

ble to course-grained breakdown, sometimes with task par-

allelism thrown in calling for a pipeline pattern of processes

and channels. Students are encouraged to use collective

functions in their solutions. Some past assignments were:

• Running queries on Transport Canada’s public

National Collision Database (which is distributed

among the workers) such as “In a year on average,

how many people typically wreck their new car?”

(opportunities for different types of reductions)

• Searching for textual “image” patterns in large text

files (presenting several choices for parallelization

and scheduling to optimize load balancing)

• Creating thumbnail images from a large set of JPEG

files of various sizes (task parallelism in the decod-

ing and encoding steps)

Deliverables apart from the source code include:

1. A process/channel diagram illustrating the architecture

adopted for the program, plus a printout showing mes-

sages successfully travelling over the channels. This is

handed in prior to the solution, to make students create a

cycling Pilot “skeleton” program and exercise the chan-

nel “plumbing” before going on to fill in the computa-

tion logic. Navigating this part of the learning curve

early helps them succeed on the entire assignment.

2. A report including three timing graphs based on given

benchmark inputs, all plotted versus number of proces-

sors: performance (wall clock time as returned by

PI_StopTime minus PI_StartTime), speedup (serial time/

parallel time), and efficiency (speedup/number of pro-

cessors). They must comment on the graphs, try to

account for anomalies, and analyze the scalability of

their solution (e.g., noting where Amdahl’s Law comes

into play). They also have to report on what difference

compiler optimization made (startling decreases in run

time of up to 30% are not uncommon, and yet the effect

tends to wash out in the speedup graph).

3. An experience report on cluster programming and their

use of Pilot, including what they liked or didn’t like.

A major course emphasis, mirroring the textbook

authors’ thrust, is on writing scalable codes that find out the

number of processors available at run time and use them all

to achieve respectable speedups. Thus the remaining

assignments, as well as the term project, reprise the above

reporting requirements, as they shift to Pthreads and

OpenMP using Intel Parallel Studio tools.

Students also have the option of using Pilot for the

term project. The Fortran API was initially created to paral-

lelize a “dusty deck” program used to simulate spectro-

grams involved in analyzing Martian soil samples for

evidences of water. Another project combined Pilot with

OpenMP, to take advantage of both coarse- and fine-

grained parallelism. Some students have enabled cluster

programming using other languages by means of the Pilot

approach, either by wrapping Pilot’s C API (similar to how

Fortran is supported) or creating a “workalike” library mir-

roring Pilot’s capabilities. These include LuaPilot and Pylot

(for Python). Pilot++ (for C++), which is truly object-ori-

ented unlike MPI’s deprecated C++ binding (removed in

MPI-3 [14]), was developed at St. Olaf College (contact

Dick Brown).

Student feedback has been important in deciding what

enhancements to Pilot would be worthwhile. In general,

error reporting has been improved from version to version.

The most requested feature—writing and reading variable

length data in a single step—was implemented in the V2.1.

Impressions quoted next are from different students

who used Pilot for an assignment:

• Pilot was very easy to write code with. The API is sim-

ple and has a familiar format for C users. For a novice

scientific programmer it simplifies the parallelization

immensely.

• Looking at the API that it was based off [MPI] I am

extremely happy that we had a simplified API to learn

on.

• The Pilot library contains a small amount of functions.

Therefore, you don't need much time to be used to it and

start working on it. There are only 3 concepts to under-

stand before handling the library properly [referring to

processes, channels, and bundles].

• It has its function parameters similar to the C language,

which simplifies the learning of the library and increases

productivity and makes it intuitive to use.

• It provides enough abstraction so that it is easy to pick

up and start using right away, but still has enough func-

tionality that makes it a usable tool.

• I'm sure the deadlock detection saved me lots of time

completing this assignment.

These impressions are from a student who used MPI

for a project comparing Game of Life on a cluster vs.

Pthreads on a multicore, so he has some basis for compar-

ing Pilot and MPI: “Now that I've used MPI, I can't believe

how much simpler you've made cluster programming. I def-

initely didn't realize how crucial Pilot's deadlock detector

was until I needed it. Using the [MPI] library isn't as diffi-

cult as people make it seem, although its incredible amount

of functions can be very overwhelming. I tried my best to

just stick with functions I could map to Pilot functions,

because those were ones I understood.” The last point

shows initial Pilot training serving successfully as a “ramp”

up to more advanced use of MPI.

The most frequent complaint about Pilot is that more

documentation is wanted. This probably does not refer to

documentation that can be read systematically. In reality,

students (and their professors!) now debug chiefly by doing

a web search with a problem, question, or error condition,

expecting an answer to pop up on Stack Overflow or the

like. With Pthreads, OpenMP, and MPI they can work this

way, because there is an adequate body of experience on the

Internet. It will be a long time before Pilot can thus com-

pete, but it is hoped that by opening a wiki or similar forum,

students may begin to contribute problems and solutions.

To conclude this section, we can now go back to the

five objections listed in Section I and explain how Pilot

overcomes them in the context of HPC training:

1. Pilot’s API is so compact that students can learn about

all of it in a short time and realize that there are no com-

plex features lurking in the background.

2. They use only an MPMD programming model based on

the process/channel architecture that they devise for a

given problem. This makes their design effort more

straightforward. By analogy with pthread_create, creat-

ing Pilot processes based on parameterized functions is

easy to understand. Such functions need not know their

MPI rank, nor does Pilot provide that information.

3. All communication functions take a single channel or

bundle argument, and all obey familiar fprintf/fscanf

syntax, so there is no confusion about rank, tag, and

communicator arguments, what order to put them in, and

when to use special symbols such as

MPI_ANY_SOURCE. Mistaken use of channels or bun-

dles, and mismatched reader/writer formats (including

differing read/write lengths), are immediately diagnosed

by error messages down to the exact line of source code.

4. If deadlock is suspected, the program can be rerun with

an additional MPI process and the command line option

for deadlock detection. The program will abort with a

printed diagnostic revealing the processes and channels

implicated in the deadlock. Other problems may be

tracked down by enabling message logging to a file.

5. The deadlock detector will also disclose whether any

process exiting creates a situation of undelivered mes-

sages (writes that cannot be satisfied by reads), or con-

versely, reads or selects that will hang because the

process(es) that could possibly write to those channels

have terminated.

A frequent occurrence with students coming to office

hours for help is to see them start with error-riddled codes

and to watch how Pilot’s diagnostics help them make incre-

mental improvements. Even though the helper may spot a

problem by eyeballing the source code, it is better to let

them run it, generating a Pilot error message. One can work

through its meaning with the student, and how to correct the

faulty code. Running again leads to the next error, or per-

haps a deadlock is detected, until finally after several itera-

tions the code works properly. This process would be more

painful using MPI alone due to its wider opportunities for

committing errors and its less-supportive error messages.

V. STATUS AND FUTURE WORK

Pilot is available for free public downloading from its

website [15]. Under “all docs” one can find an installation

guide, release notes, tutorial, quick reference card, and list

of publications. Training slides (3 hours) and source code

for the hands-on lab exercises are also there. Pilot can be

used for free by anyone without any licensing formalities.

The library is copyright by the University of Guelph

and was not originally open source in order to control API

bloat, and, more importantly, to avoid ad hoc enhancements

that break the CSP formalism. By Version 3.0, we consider

the library mature enough to release it under the open

source LGPL, meaning that programmers can incorporate it

into their proprietary codes without forcing those to become

open source themselves. Pilot is written to a high profes-

sional standard and comes with a large suite of regression

tests. It can be downloaded and built by a user with ordi-

nary privileges; it need not be installed by a system admin-

istrator. We have not found a version of MPI with which C

Pilot does not build, and would like to know if such occurs.

In contrast, the Fortran API is more sensitive to compilers

because interpretations of ISO_C_BINDING vary.

In terms of future work, the following are planned:

• Off-line utilities to help visualize execution-time mes-

sage flows by analyzing the log (difficult to do by hand)

• Offering the option to let PI_MAIN be a thread, so that a

“snoozing master” need not consume an OS process

(meaning a dedicated core) while simply waiting for

workers to respond

• Providing limited facilities for asynchronous I/O, at least

for the common technique of double buffering

There are no plans at present to support any new fea-

tures from MPI-3. Finally, the Fortran API lags behind at

V1.2, not accessing all features of the latest C version.

Given sufficient demand, this could be prioritized.

VI. CONCLUSION

Pilot carries the motto “A friendly face for MPI.” We

have shown how the Pilot approach to HPC programming

differs from MPI’s, helping teach the principles of message-

passing programming in a well-cushioned environment fea-

turing a simple process-and-channel based MPMD pro-

gramming model, whose user-defined architecture is

enforced at run time, with extensive diagnostics for all

kinds of usage errors and an integrated deadlock detector.

Instructors can use Pilot as an endpoint for training in an

individual course, perhaps targeted at beginning scientific

programmers who are breaking into parallel programming,

or as a gentle ramp up to full-bodied MPI for advanced

users. We welcome contributions from the HPC user com-

munity aimed at improving Pilot and adapting it further for

educational purposes.

ACKNOWLEDGMENT

Pilot research has been supported by SHARCNET

(Shared Hierarchical Academic Research Computing Net-

work) and NSERC (Natural Sciences and Engineering

Research Council) of Canada.

REFERENCES

[1] Message Passing Interface Forum. MPI: A Message-Passing

Interface standard version 2.2 [online]. Sep 2009 [cited 08/

26/14]. Available from: http://www.mpi-forum.org/docs/mpi-

2.2/mpi22-report/mpi22-report.htm.

[2] Calvin Lin and Larry Snyder. Principles of Parallel

Programming. Addison-Wesley, 2009.

[3] Argonne National Laboratory, Mathematics and Computer

Science. MPI’s send modes [online]. 2012 [cited 08/23/14].

Available from: http://www.mcs.anl.gov/research/projects/

mpi/sendmode.html.

[4] Timothy J. McGuire. A simplified message-passing library.

Journal of Computing Sciences in Colleges, 19(4):252–256,

Apr. 2004.

[5] Ananth Grama, Anshul Gupta, George Karypis, and Vipin

Kumar. Introduction to Parallel Computing. Addison-

Wesley, 2nd edition, 2003.

[6] Lori Pollock and Mike Jochen. Making parallel programming

accessible to inexperienced programmers through

cooperative learning. In Proceedings of the thirty-second

SIGCSE technical symposium on Computer Science

Education (SIGCSE ”01), pages 224–228. ACM, 2001.

[7] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic

software testing of MPI applications with Umpire. In

Supercomputing ’00: Proceedings of the 2000 ACM/IEEE

conference on Supercomputing, page 51, Washington, DC,

2000. IEEE Computer Society.

[8] Jayant DeSouza and Jeff Squyres. Why MPI makes you

scream! and how can we simplify parallel debugging?

Supercomputing ’05 (SC05), Birds-of-a-Feather Session,

2005. Available from: http://www.open-mpi.org/papers/sc-

2005/debugging-bof-6up.pdf.

[9] John Carter, W.B. Gardner, and G. Grewal. The Pilot

approach to cluster programming in C. In Proc. of the 24th

IEEE International Parallel & Distributed Processing

Symposium, Workshops and Phd Forum, Workshop on

Parallel and Distributed Scientific and Engineering

Computing (PDSEC-10), pages 1–8, Atlanta, Apr. 23 2010.

[10] C.A.R. Hoare. Communicating sequential processes.

Communications of the ACM, 21(8):666–677, 1978.

[11] Humaira Kamal and Alan Wagner. An integrated fine-grain

runtime system for MPI. Computing, 96(4):293–309, 2014.

[12] Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz, and

Matthias S. Müller. A graph based approach for MPI

deadlock detection. In ICS ’ 09: Proceedings of the 23rd

international conference on Supercomputing, pages 296–305,

New York, NY, 2009. ACM.

[13] William Gardner. Third-year parallel programming for CS

undergraduates. In Frontiers in Education: Computer

Science and Computer Engineering (FECS ’11), pages 8–13.

Las Vegas, Jul. 18-21 2011.

[14] Jeff Squyres. The MPI C++ bindings: what happened, and

why? [online]. Oct 2012 [cited 08/23/14]. Available from:

http://blogs.cisco.com/performance/the-mpi-c-bindings-what

-happened-and-why. Cisco Blog, High Performance

Computing Networking.

[15] Pilot home [online]. Available from: http://

carmel.socs.uoguelph.ca/pilot.

