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a b s t r a c t

The numerical solution of reaction–diffusion systems modelling predator–prey dynamics
using implicit-symplectic (IMSP) schemes is relatively new. When applied to problems
with chaotic dynamics they perform well, both in terms of computational effort and
accuracy. However, until the current paper, a rigorous numerical analysis was lacking. We
analyse the semi-discrete in time approximations of a first-order IMSP scheme applied
to spatially extended predator–prey systems. We rigorously establish semi-discrete a
priori bounds that guarantee positive and stable solutions, and prove an optimal a priori
error estimate. This analysis is an improvement on previous theoretical results using
standard implicit–explicit (IMEX) schemes. The theoretical results are illustrated via
numerical experiments in one and two space dimensions using fully-discrete finite element
approximations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In spatial ecology the deterministic description of population densities that are continuous in space and time are mod-
elled by reaction–diffusion systems,which can be analysed bymeans of thewell-developed theories of differential equations
and dynamical systems [1]. We focus on spatially-extended predator–prey models described by reaction–diffusion systems
in the following general form

∂u
∂t

= f (u, v) + Du∆u, (1.1a)

∂v

∂t
= g(u, v) + Dv∆v, (1.1b)

where u(x, t) and v(x, t) represent population densities of prey and predators at time t and position x and Du and Dv are
positive constant diffusion coefficients. The equations evolve in ΩT := Ω × (0, T ) where the domain Ω is a bounded and
open subset of Rd, d ≤ 3. The boundary of the domain ∂Ω is assumed to belong to the class of C1. The system is augmented
with initial conditions

u0(x) := u(x, 0), v0(x) := v(x, 0), x ∈ Ω, (1.1c)
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and the homogeneous Neumann boundary conditions

∂u
∂ν

=
∂v

∂ν
= 0 on ∂Ω × (0, T ). (1.1d)

In the above equations ν denotes the outward unit normal to ∂Ω and ∆ denotes the Laplacian operator
d

i=1
∂2

∂xi2
.

Results from semigroup theory and an a priori estimatewere used inGarvie and Trenchea [2] to prove the global existence
and uniqueness of the classical solutions of the predator–prey system (1.1a)–(1.1d) on two specific systems. For the well-
posedness of the problem, we assume the nonlinearities f , g are globally Lipschitz, i.e., there exists L > 0 such that

|f (u1, v1) − f (u2, v2)| + |g(u1, v1) − g(u2, v2)| ≤ L(|u1 − u2| + |v1 − v2|), (1.2)

for all ui and vi in a compact subset of R+
× R+ and, in order to assure the non-negativity of solutions corresponding to

biologically meaningful densities, the reaction kinetics satisfy

f (0, v), g(u, 0) ≥ 0, ∀u, v ≥ 0. (1.3)

Consequently, if the initial data (u0(x), v0(x)) is chosen in [0, +∞)2 for all x ∈ Ω , then by a maximum principle the
solution (u(x, t), v(x, t)) also lies in [0, +∞)2, which is a positively invariant region for the system.

Moreover, we assume that f (u, v) has logistic dominated growth in the first variable, namely

f (u, v) ≤ u(1 − u), ∀u, v ≥ 0, (1.4)

and the function g satisfies a sub-linear growth in the second variable, i.e., there exists Cg > 0 such that

g(u, v) ≤ Cgv, ∀u, v ≥ 0. (1.5)

Notice that from the assumptions (1.3)–(1.5) it is easy to show that for all u, v ≥ 0

g(u, 0) = f (0, v) = 0. (1.6)

The assumptions (1.3)–(1.5) are not overly restrictive as the principal population dynamics models, based on logistic
prey growth and ‘Holling type’ functional response of the predators, satisfy these conditions [3–5]. This is the case of
models that couple logistic prey growth with Holling II and IV functional predator responses [6] as well as the well-known
Rosenzweig–MacArthur model [7].

The reaction–diffusion system (1.1a)–(1.1d) includes a class of predator–prey models exhibiting instabilities [8].
Reaction–diffusion systems with logistic prey growth and ‘Holling type’ functional response of the predators exhibit spiral
waves, targetwaves, and spatiotemporal chaos. However, diffusion induced instability is not possible for systemsof this type.
Numerical schemes used to approximate such dynamics should be sufficiently robust to reproduce the correct behaviour of
the continuous solutions. Stability, high-order consistency and preservation of geometric properties form three pillars on
which numerical methods for differential equations rest [9]. The need for a rigorous error analysis of the numerical schemes
to approximate the reaction–diffusion dynamicswas highlighted in the papers byM.Garvie, C. Trenchea and their co-authors
in [10,2,11]. In particular, two implicit–explicit schemes (IMEX) have been extensively analysed by the authors in Garvie and
Trenchea [10] using the standard Galerkin finite element method with piecewise linear continuous basis functions.

The preservation of properties of the exact flow under numerical discretization is a more recent field of research. For an
exhaustive study of geometric integrators, especially for ordinary differential systems, we refer to the monograph by Hairer
et al. [12]. Recently, attention has been devoted to the geometric integration of reaction–diffusion equations. For example,
splitting methods were introduced by Hansen et al. [9] to preserve positivity of the numerical approximations.

Implicit-symplectic (IMSP) schemes are numerical integrators based on an implicit scheme for the stiff diffusive
term and a geometric integrator for the reaction function. In Diele et al. [13,14] IMSP schemes were proposed as novel
numerical schemes for the simulation of population and metapopulation predator–prey dynamics. Symplectic partitioned
Runge–Kutta schemes based on composition of Symplectic Euler stepswere implemented for approximating Lotka–Volterra
(LV) reaction–diffusion dynamics. The authors were motivated by the classical results for the local Poisson nature of the LV
dynamics (see, for example, Hairer et al. [12]). Poisson integrators (for example, Symplectic Euler method and composition
of symplectic Euler steps) reproduce the correct qualitative behaviour of the theoretical solution and achieve an accurate
long-time numerical approximation [12,15]. A stability analysis of IMSP schemes in terms of the diffusion and the reaction
time-scales was recently developed in Settanni and Sgura [16]. Their numerical simulations reveal that IMSP schemes
provide the best choice for spatio-temporal dynamics of standing oscillations around an equilibrium of centre type (see
e.g. Guckenheimer and Holmes [17]).

In this paper we undertake the rigorous numerical analysis of the semi-discrete in time approximations of a first-order
IMSP scheme applied to the spatially extended predator–prey system (1.1a)–(1.1d). In Diele et al. [13,14] themethod of lines
was used. Here, we consider a more technical methodology based on the analysis of a semi-discrete in time formulation of
the scheme. We do not undertake the numerical analysis of the fully-discrete problems, however, the analysis of the semi-
discrete problems provides the basis on which such a task could be carried out. A novel aspect of the current work is the use
of the IMSP approach in conjunction with the standard Galerkin finite element method to solve reaction–diffusion systems.
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The remainder of this paper is organized as follows. In Section 2 we present the semi-discrete in time IMSP scheme
for approximating system (1.1a)–(1.1d), and give conditions for positive and stable solutions together with an a priori
error estimate. In Section 3 the fully discrete scheme is presented, and in Section 4 we give the results of some numerical
experiments. Concluding comments are given in Section 5.

2. The semi-discrete in time IMSP approximation

2.1. Mathematical preliminaries

We introduce some mathematical notation and preliminaries. Consider the Banach space L2(Ω) with norm

∥u∥ :=


Ω

|u(x)|2dx
1/2

,

where (·, ·) is the usual L2 inner product. We let ⟨·, ·⟩ denote the duality pairing between (H1(Ω))′ and H1(Ω), where
standard notation for the Sobolev space H1(Ω) and its dual (H1(Ω))′ have been used. The norm of (H1(Ω))′ is denoted
by ∥ · ∥∗. We also define L2(ΩT ) as the Banach space L2(0, T , L2(Ω)) of all the functions u : (0, T ) → L2(Ω) such that
t → ∥u(t)∥ is in L2(0, T ), with norm

∥u∥L2(ΩT ) :=

 T

0
∥u(t)∥2dt

1/2

.

A similar definition is used to denote the space L2(0, T , (H1(Ω))′), the space of all the functions u : (0, T ) → (H1(Ω))′ such
that t → ∥u(t)∥∗ is in L2(0, T ) with norm

∥u∥L2(0,T ,(H1(Ω))′) :=

 T

0
∥u(t)∥2

∗
dt
1/2

.

With this notation the system (1.1a)–(1.1d) can be written in the following continuous in time weak formulation:
Find u(·, t), v(·, t) ∈ H1(Ω) such that (u(·, 0), v(·, 0)) = (u0(·), v0(·)) and

ut , χ

+ Du(∇u, ∇χ) = ⟨f (u, v), χ⟩, (2.7a)

vt , χ

+ Dv(∇v, ∇χ) = ⟨g(u, v), χ⟩, (2.7b)

for all χ ∈ H1(Ω) and for almost every t ∈ (0, T ).

2.2. The algorithm

We discretize the temporal horizon (0, T ) using a uniform mesh grid of N + 1 points tn = n∆t, n = 0, . . . ,N , with
constant time step ∆t = T/N . Let the initial densities of predators and prey be v0(x) and u0(x) respectively, for all x ∈ Ω .
We define the first-order IMSP scheme (in weak form) as follows:

For n = 0, . . . ,N − 1 find vn1 , vn+1, un+1
∈ H1(Ω) such that (u0, v0) = (u0(·), v0(·)) and for all χ ∈ H1(Ω)un+1

− un

∆t
, χ


+ Du(∇un+1, ∇χ) = (f (un, vn1), χ), (2.8a)vn+1
− vn

∆t
, χ


+ Dv(∇vn+1, ∇χ) = (g(un, vn1), χ), (2.8b)vn1 − vn

∆t
, χ


=

g(un, vn1), χ


, (2.8c)

or, equivalently:
For n = 0, . . . ,N − 1 find vn1 , un1 , vn+1, un+1

∈ H1(Ω) such that (u0, v0) = (u0(·), v0(·)) and for all χ ∈ H1(Ω)un+1
− un1

∆t
, χ


+ Du(∇un+1, ∇χ) = 0, (2.9a)vn+1
− vn1

∆t
, χ


+ Dv(∇vn+1, ∇χ) = 0, (2.9b)un1 − un

∆t
, χ


=

f (un, vn1), χ


, (2.9c)vn1 − vn

∆t
, χ


=

g(un, vn1), χ


. (2.9d)
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From the formulation of the first order IMSP scheme (2.9a)–(2.9d), we see that it differs from the corresponding IMEX
scheme only in the explicit discretization for v in (2.9c) and (2.9d) (the IMEX scheme evaluates f and g at (un, vn)).
Consequently, in the general case the IMSP scheme requires extra computational cost. However, whenever g depends at
most linearly on v, the scheme (2.9c) and (2.9d) can be solved explicitly. This point will be clarified in Section 3.

In the following section wewill use both (2.8a)–(2.8c) and (2.9a)–(2.9d) in order to prove positivity, stability and provide
errors estimates.

2.3. Positivity

In the following theorem we give a bound on the time step which guarantees the positivity of IMSP solutions.

Theorem 2.1. Assume the time step ∆t < 1/L and Ω is a domain of class C1. Provided that the initial conditions are positive,
i.e., u0(x) = u(x, 0) > 0, v0(x) = v(x, 0) > 0, for all x ∈ Ω , then the solutions un(x), vn(x) of the first-order scheme (2.9a)–
(2.9d) are positive for all n ≥ 0.

Proof. We use an induction argument. Suppose that un, vn > 0 in Ω , for a fixed arbitrary n ≥ 0. First we prove that
vn1(x) ≠ 0 for all x in Ω . Assume, by contradiction, that there exists x◦ ∈ Ω such that vn1(x◦) = 0. From (2.9d), using (1.6),
we have that

0 = vn1(x◦) = vn(x◦) + ∆tg(un(x◦), vn1(x◦)) = vn(x◦) > 0,

which is a contradiction. Moreover, from (2.9d), using (1.6), (1.2), and the assumption on the time step ∆t < 1/L, we also
have

|vn1 − vn
| = ∆t|g(un, vn1) − g(un, 0)| ≤ ∆tL|vn1 | < |vn1 |.

From the above relation, and the induction assumption vn(x) > 0, it follows that vn1(x) > 0, for all x in Ω . From (2.9b) we
therefore obtain

vn+1
− ∆tDv∆vn+1

= vn1 > 0 in Ω.

Finally, the strongmaximum principle and Hopf’s lemma for elliptic equations (see, e.g., Barbu [18], Evans [19], DiBenedetto
[20]) yield the positivity of vn+1. In a similar way it is easy to prove that un1 in (2.9c) and, consequently, un+1 in (2.9a) are
both positive. �

2.4. Stability

In this section we prove an a priori estimate for the semi-discrete solutions (2.8a)–(2.8c) depending on the initial data.
First define

∆ts := 1/max

1, 2Cg


. (2.10)

Theorem 2.2. Assume the time step satisfies∆t ≤ ∆ts. Then the solution to (2.8a)–(2.8c) satisfies the following energy estimate:

∥uN
∥
2
+ ∥vN

∥
2
+

N−1
n=0


∥un+1

− un
∥
2
+

1
2
∥vn+1

− vn
∥
2


+ ∆t
N−1
n=0


2Du∥∇un+1

∥
2
+ Dv∥∇vn+1

∥
2

≤ exp


2∆tN
∆ts − ∆t

 
∥u0∥

2
+ ∥v0∥

2 . (2.11)

Proof. First we derive an energy estimate for un. We take χ = un+1 in (2.8a), and use the Cauchy–Schwarz inequality, (1.4)
and the positivity of un+1 to obtain

1
2∆t


∥un+1

∥
2
− ∥un

∥
2
+ ∥un+1

− un
∥
2

+ Du∥∇un+1
∥
2

=

f (un, vn1), un+1

≤


Ω


unun+1

− (un)2un+1 dΩ ≤
1
2
∥un+1

∥
2
+

1
2
∥un

∥
2.

The discrete Grönwall inequality (see e.g. [21,22, Lemma 5.1.1]) yields

∥uN
∥
2
+

1
1 − ∆t

N−1
n=0

∥un+1
− un

∥
2
+

2∆t
1 − ∆t

Du

N−1
n=0

∥∇un+1
∥
2

≤ ∥u0∥
2 exp


2∆tN
1 − ∆t


, ∀∆t ≤ 1. (2.12)
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To obtain an energy estimate for vn, we take χ = vn1 in (2.8c), and use assumptions (2.10), (1.5) to obtain

1
2∆t


∥vn1∥2

− ∥vn
∥
2
+ ∥vn1 − vn

∥
2

= ⟨g(un, vn1), vn1⟩ ≤ Cg∥v
n1∥2,

which yields

∥vn1∥2
+

1
1 − 2∆tCg

∥vn1 − vn
∥
2

≤
1

1 − 2∆tCg
∥vn

∥
2. (2.13)

Similarly, let χ = vn+1 in (2.8b), use (2.13), sum for n = 0, . . . ,N − 1, and apply the discrete Grönwall inequality to get

∥vN
∥
2
+

1
1 − ∆tCg

N−1
n=0

∥vn+1
− vn

∥
2
+

2∆tDv

1 − ∆tCg

N−1
n=0

∥∇vn+1
∥
2

≤ ∥v0∥
2 exp


2N∆tCg

1 − 2∆tCg


, ∀∆t ≤

1
2Cg

. (2.14)

Finally (2.12) and (2.14) imply (2.11). �

2.5. Error analysis

Let εn
u, ε

n
v ∈ (H1(Ω))′ denote the following local truncation errors for scheme (2.8a)–(2.8c), satisfying

⟨εn
u, χ⟩ :=

1
∆t

⟨u(tn) − u(tn−1), χ⟩ − ⟨f (u(tn−1), v(tn)), χ⟩ + Du(∇u(tn), ∇χ),

⟨εn
v, χ⟩ :=

1
∆t

⟨v(tn) − v(tn−1), χ⟩ − ⟨g(u(tn−1), v(tn)), χ⟩ + Dv(∇v(tn), ∇χ),

where χ ∈ H1(Ω). Furthermore, let enu, e
n
v ∈ H1(Ω) denote the point-wise errors

enu = u(tn) − un, env = v(tn) − vn,

satisfying the following equations:

en+1
u − enu

∆t
− Du∆hen+1

u = f (u(tn), v(tn+1)) − f (un, vn1) + εn+1
u , (2.15a)

en+1
v − env

∆t
− Dv∆hen+1

v = g(u(tn), v(tn+1)) − g(un, vn1) + εn+1
v , (2.15b)

where ∆h is a discrete linear operator approximating the continuous Laplacian.

Lemma 2.1. Assume the classical solution of (1.1a)–(1.1d) has the following regularity:

du
dt

,
dv
dt

,
d2u
dt2

,
d2v
dt2

∈ L2(0, T , (H1(Ω))′). (2.16)

Then the truncation error satisfies the following bound:
∆t

N−1
n=0


1
Du

∥εn+1
u ∥

2
∗
+

1
Dv

∥εn+1
v ∥

2
∗

 1
2

≤ ∆t

 tN

t0

1
Du

d2udt2
(t)


∗

+ L
dudt (t)


∗

2

+
1
Dv

d2vdt2
(t)


∗

+ L
dvdt (t)


∗

2

dt

 1
2

. (2.17)

Proof. Using the Taylor expansion to first-order

u(tn) = u(tn+1) − ∆t
du
dt

(tn+1) +

 tn+1

tn
(t − tn)

d2u
dt2

(t)dt,

and the continuous in time equations (2.7a)–(2.7b), yields

⟨εn+1
u , χ⟩ = −


1

∆t

 tn+1

tn
(t − tn)

d2u
dt2

(t)dt, χ

+ (f (u(tn+1), v(tn+1)) − f (u(tn), v(tn+1)), χ) ,

⟨εn+1
v , χ⟩ := −


1

∆t

 tn+1

tn
(t − tn)

d2v
dt2

(t)dt, χ

+ (g(u(tn+1), v(tn+1)) − g(u(tn), v(tn+1)), χ) .
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Using the Lipschitz assumption (1.2) and Taylor expansion we havef (u(tn+1), v(tn+1)) − f (u(tn), v(tn+1)), χ
 ≤ L

 tn+1

tn

dudt (t)


∗

dt∥χ∥1,g(u(tn+1), v(tn+1)) − g(u(tn), v(tn+1)), χ
 ≤ L

 tn+1

tn

dvdt (t)


∗

dt∥χ∥1,

and therefore

∥εn+1
u ∥∗ ≤

 tn+1

tn

d2udt2
(t)


∗

+ L
dudt (t)


∗


dt,

∥εn+1
v ∥∗ ≤

 tn+1

tn

d2vdt2
(t)


∗

+ L
dvdt (t)


∗


dt,

which yields (2.17). �

Using (2.15a)–(2.15b) we establish an energy estimate for the local truncation errors.

Lemma 2.2. Under assumption (1.2), for sufficiently small time steps

∆t ≤ ∆t◦ := 1/max{Du + 7L,Dv + 11L},

the first-order symplectic scheme (2.8a)–(2.8c) satisfies the following estimate

∥eNu ∥
2
+ ∥eNv ∥

2
+

∆t
1 − ∆t/∆t◦

N−1
n=0


Du∥∇en+1

u ∥
2
+ Dv∥∇en+1

v ∥
2

≤
1

1 − ∆t/∆t◦


(1 + 2∆tL − ∆t/∆t◦) (∥e0u∥

2
+ ∥e0v∥

2)

+ ∆t
N−1
n=0


1
Du

∥εn+1
u ∥

2
∗
+

1
Dv

∥εn+1
v ∥

2
∗


+ 4∆t2L

dv
dt

2
L2(0,T ;L2(Ω))

+ 2∆t2LCg∥v0∥
2 exp

 2N∆tCg

1 − 2∆tCg


exp


N∆t

∆t◦ − ∆t


. (2.18)

Proof. We test equation (2.15a) with en+1
u , test equation (2.15b) with en+1

v , add, use the polarization identity

1
2
(|a − b|2 − a2 − b2) = −ab

and the Lipschitz assumption (1.2) yielding

1
2∆t


∥en+1

u ∥
2
− ∥enu∥

2
+ ∥en+1

u − enu∥
2

+
1

2∆t


∥en+1

v ∥
2
− ∥env∥

2
+ ∥en+1

v − env∥
2

+ Du∥∇en+1
u ∥

2
+ Dv∥∇en+1

v ∥
2

≤
1

2Du
∥εn+1

u ∥
2
∗
+

1
2Dv

∥εn+1
v ∥

2
∗
+

1
2

(Du + 5L) ∥en+1
u ∥

2
+

Du

2
∥∇en+1

u ∥
2

+
1
2

(Dv + 9L) ∥en+1
v ∥

2
+

Dv

2
∥∇en+1

v ∥
2
+ L


∥enu∥

2
+ ∥env∥

2
+ (∥v(tn+1) − v(tn)∥ + ∥vn

− vn1∥)2

.

Simplifying and multiplying by 2∆t yields

∥en+1
u ∥

2
− ∥enu∥

2
+ ∥en+1

u − enu∥
2
+ ∥en+1

v ∥
2
− ∥env∥

2
+ ∥en+1

v − env∥
2
+ ∆tDu∥∇en+1

u ∥
2
+ ∆tDv∥∇en+1

v ∥
2

≤
∆t
Du

∥εn+1
u ∥

2
∗
+

∆t
Dv

∥εn+1
v ∥

2
∗
+ ∆t (Du + 5L) ∥en+1

u ∥
2
+ ∆t (Dv + 9L) ∥en+1

v ∥
2

+ 2∆tL

∥enu∥

2
+ ∥env∥

2
+ (∥v(tn+1) − v(tn)∥ + ∥vn

− vn1∥)2

.

Summing for n = 0, . . . ,N − 1, yields

∥eNu ∥
2
+ ∥eNv ∥

2
+

N−1
n=0


∥en+1

u − enu∥
2
+ ∥en+1

v − env∥
2

+ ∆t
N−1
n=0


Du∥∇en+1

u ∥
2
+ Dv∥∇en+1

v ∥
2

≤ (1 + 2∆tL)

∥e0u∥

2
+ ∥e0v∥

2
+ ∆t

N−1
n=0


1
Du

∥εn+1
u ∥

2
∗
+

1
Dv

∥εn+1
v ∥

2
∗


+ ∆t/∆t◦

N−1
n=0


∥en+1

u ∥
2
+ ∥en+1

v ∥
2

+ 2∆tL
N−1
n=0

(∥v(tn+1) − v(tn)∥ + ∥vn
− vn1∥)2.
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Using the discrete Grönwall lemma leads to

∥eNu ∥
2
+ ∥eNv ∥

2
+

1
1 − ∆t/∆t◦

N−1
n=0


∥en+1

u − enu∥
2
+ ∥en+1

v − env∥
2

+
∆t

1 − ∆t/∆t◦

N−1
n=0


Du∥∇en+1

u ∥
2
+ Dv∥∇en+1

v ∥
2

≤
1

1 − ∆t/∆t◦


(1 + 2∆tL − ∆t/∆t◦) (∥e0u∥

2
+ ∥e0v∥

2) + ∆t
N−1
n=0


1
Du

∥εn+1
u ∥

2
∗
+

1
Dv

∥εn+1
v ∥

2
∗



+ 2∆tL
N−1
n=0

(∥v(tn+1) − v(tn)∥ + ∥vn
− vn1∥)2


exp


N∆t

∆t◦ − ∆t


. (2.19)

The expression

∥v(tn+1) − v(tn)∥ ≤ ∆t
1
2

 tn+1

tn

dv
ds

(s)
2ds 1

2

,

implies

N−1
n=0

∥v(tn+1) − v(tn)∥2
≤ ∆t

 tN

t0

dv
ds

(s)
2ds. (2.20)

With the assumptions (2.10), (1.5), and using (2.13), we also have

∥vn1 − vn
∥ = ∆t∥g(un, vn1)∥ ≤ Cg∆t∥vn1∥ ≤

Cg∆t

(1 − 2∆tCg)
1
2
∥vn

∥,

and with (2.11) this implies

N−1
n=0

∥vn1 − vn
∥
2

≤
Cg∆t
2

∥v0∥
2 exp


2N∆tCg

1 − ∆tCg


. (2.21)

Substituting (2.20)–(2.21) into (2.19) and using (2.14) implies

∥eNu ∥
2
+ ∥eNv ∥

2
+

1
1 − ∆t/∆t◦

N−1
n=0


∥en+1

u − enu∥
2
+ ∥en+1

v − env∥
2

+
∆t

1 − ∆t/∆t◦

N−1
n=0


Du∥∇en+1

u ∥
2
+ Dv∥∇en+1

v ∥
2

≤
1

1 − ∆t/∆t◦


(1 + 2∆tL − ∆t/∆t◦) (∥e0u∥

2
+ ∥e0v∥

2)

+ ∆t
N−1
n=0


1
Du

∥εn+1
u ∥

2
∗
+

1
Dv

∥εn+1
v ∥

2
∗


+ 4∆t2L

 tN

t0

dvdt (t)
2 dt

+ 2∆t2LCg∥v0∥
2 exp


2N∆tCg

1 − 2∆tCg


exp


N∆t

∆t◦ − ∆t


,

which implies (2.18). �

Combining Lemmas 2.1 and 2.2 we derive the following error estimate that implies convergence and first-order accuracy
in time for the solution un, vn of (2.8a)–(2.8c), with the assumption that e0u, e

0
v are also of order ∆t .

Theorem 2.3. Under the assumptions of Lemmas 2.1 and 2.2, there exists a constant C(u, v) > 0 such that

max
0≤n≤N


∥enu∥ + ∥env∥


+


∆t

N−1
n=0


Du∥∇en+1

u ∥
2
+ Dv∥∇en+1

v ∥
2 1

2

≤ C(u, v)

∥e0u∥ + ∥e0v∥ + ∆t


.
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Proof. Indeed,

∥eNu ∥
2
+ ∥eNv ∥

2
+

∆t
1 − ∆t/∆t◦

N−1
n=0


Du∥∇en+1

u ∥
2
+ Dv∥∇en+1

v ∥
2

≤
1

1 − ∆t/∆t◦


(1 + 2∆tL − ∆t/∆t◦) (∥e0u∥

2
+ ∥e0v∥

2)

+ ∆t
N−1
n=0


1
Du

∥εn+1
u ∥

2
∗
+

1
Dv

∥εn+1
v ∥

2
∗


+ 4∆t2L

dvdt
2
L2(0,T ;L2(Ω))

+ 2∆t2LCg∥v
0
∥
2 exp


2CgN∆t

1 − 2∆tCg


exp


N∆t

∆t◦ − ∆t


≤

1
1 − ∆t/∆t◦


(1 + 2∆tL − ∆t/∆t◦) (∥e0u∥

2
+ ∥e0v∥

2) + ∆t2
 tN

t0

1
Du

d2udt2
(t)


∗

+ L
dudt (t)


∗

2

+
1
Dv

d2vdt2
(t)


∗

+ L
dvdt (t)


∗

2

dt + 4∆t2L
dvdt

2
L2(0,T ;L2(Ω))

+ 2∆t2LCg∥v
0
∥
2 exp


2CgN∆t

1 − 2∆tCg


exp


N∆t

∆t◦ − ∆t


. �

3. A fully-discrete approximation

As previously pointed out, no analysis of the fully discrete problem is undertaken; nevertheless in this section the fully
discrete approximations are used to generate the numerical solutions. For the numerical implementation of the IMSP scheme
we employ a Galerkin finite element approximation with continuous piecewise linear basis functions as in Garvie and
Trenchea [10].

For simplicity we assume that Ω is a polygonal domain. Let T h be a quasi-uniform partitioning of Ω into disjoint open
simplices {τ } with hτ :=diamτ and h :=maxτ∈T hhτ , so that Ω̄ = ∪τ∈T h τ̄ . We introduce Sh, the standard finite element
space:

Sh := {v ∈ C(Ω̄) : v|τ is linear ∀τ ∈ T h
} ⊂ H1(Ω).

We shall also need the Lagrange interpolation operator πh
: C(Ω̄) → Sh such that πh(v(xj)) = v(xj) for j = 0, . . . ,M ,

where {xj}Mj=0 is the set of nodes of the triangulation. Let {φj}
M
j=0 be the standard basis for Sh, satisfying φj(xi) = δij. A discrete

L2 inner product on C(Ω̄) is then defined by

(u, v)h :=


Ω

πh(u(x)v(x))dx ≡

M
j=0

Mjju(xj)v(xj),

where Mjj := (1, φj) ≡ (φj, φj)
h > 0, corresponding to the (diagonal) lumped Mass Matrix M . We also define Kij :=

(∇φi, ∇φj) corresponding to the Stiffness Matrix K , and Lij := (Mii)
−1Kij, corresponding to the matrix L = (M)−1K . We

denote the identity matrix to be I .
The fully-discrete finite element first-order IMSP approximation is then formulated as follows.
For n = 0, . . . ,N − 1 find Un1

h , V n1
h ,Un+1

h , V n+1
h ∈ Sh such that (U0

h , V
0
h ) = (πhu0, π

hv0) and for all χh ∈ Sh
Un+1
h − Un1

h

∆t
, χh

h

+ Du(∇Un+1
h , ∇χh) = 0, (3.22a)


V n+1
h − V n1

h

∆t
, χh

h

+ Dv(∇V n+1
h , ∇χh) = 0, (3.22b)


Un1
h − Un

h

∆t
, χh

h

=

f (Un

h , V
n1
h ), χh

h
, (3.22c)

V n1
h − V n

h

∆t
, χh

h

=

g(Un

h , V
n1
h ), χh

h
. (3.22d)

The Galerkin method involves choosing Un
h =

M
j=0 U

n
j φj, V n

h =
M

j=0 V
n
j φj, χh = φi, i = 0, . . . ,M , where Un

j ≈

u(xj, tn), V n
j ≈ v(xj, tn).
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After defining {Un
}i = Un

i , {V
n
}i = V n

i , this leads to a nonlinear algebraic system that is solved via the following steps:

1. Solve the nonlinear system for the vector Vn1 :

Vn1 − ∆tg(Un,Vn1) = Vn (3.23a)

2. Evaluate the entries of the vector Un1 :

Un1 = Un
+ ∆tf (Un,Vn1) (3.23b)

3. Solve the linear systems for Un+1 and Vn+1:

(I − ∆tDuL)Un+1
= Un1 , (3.23c)

(I − ∆tDvL)Vn+1
= Vn1 . (3.23d)

Let us compare the previous schemewith the classical IMEX scheme (see e.g. formula (1.8) in Koto [23] or Scheme 2 in Garvie
[11]) defined as follows:

1. Evaluate the entries of the vector Vn1 :

Vn1 = Vn
+ ∆tg(Un,Vn) (3.24a)

2. Evaluate the entries of the vector Un1 :

Un1 = Un
+ ∆tf (Un,Vn) (3.24b)

3. Solve the linear systems (3.23c) and (3.23d) for Un+1 and Vn+1.

The only difference between these two schemes is in the calculation of Vn1 . In the IMSP scheme we must solve a nonlinear
system (step (3.23a)), while for the IMEX scheme we evaluate step (3.24a). However, whenever g(u, v) = vg̃(u) for a given
g̃(u), then (3.23a) can be replaced by the following diagonal linear system, which can be solved elementwise:

(I − ∆tdiag(g̃(Un)))Vn1 = Vn.

The coefficient matrices of the linear systems (3.23c) and (3.23d) are strictly (row) diagonally dominant matrices with
all off-diagonal elements negative or zero. Consequently, (I − ∆tDuL) and (I − ∆tDvL) are M-matrices, which guarantee
that their inverses are positive. Direct solvers based on Gaussian elimination (without partial pivoting and with only
one application of LU factorization) can be successfully applied. Furthermore, because of the diagonal dominance of the
coefficient matrices, the GMRES algorithmwith restarts may also be applied since it converges for any restart value [24,25].

4. Numerical examples

Spatially extended predator–prey models that couple logistic prey growth with Holling type II or type IV functional
responses of the predators satisfy our assumptions, and are interesting from both an ecological and numerical
perspective [6]. A well-known model with logistic prey growth and Holling type II functional response of the predators
is the spatially explicit Rosenzweig–MacArthur (RM) model [7], and is arguably the most widely studied spatially extended
predator–prey model.

In Diele et al. [13] IMSP schemes were applied to a two-dimensional phytoplankton–zooplankton RM model [26] and
results compared with those from the application of a standard first-order IMEX scheme (see ‘Scheme 2 with Kinetics (i)’ in
Garvie [11]). The IMSP schemes converged faster than the IMEX schemes, particularly during the onset of spatiotemporal
chaos.

4.1. A one-dimensional example

We compare the performance of the IMSP scheme with the performance of an IMEX scheme, for the numerical solution
of system (1.1a)–(1.1d) in one space dimension, where the kinetics take the following specific Holling Type II form

f (u, v) = u(1 − u) − v(1 − e−γ u), (4.25a)

g(u, v) = βv(α − 1 − αe−γ u), (4.25b)

with α, β, γ > 0 (see Garvie and Trenchea [10]). The assumption (1.5) is satisfied with Cg = β(α − 1), as

g(u, v) = βv(α − 1 − αe−γ u) ≤ Cgv.

The parameters were chosen in order to guarantee a stable limit cycle in the reaction kinetics surrounding an unstable
steady state. The diffusion coefficients Du and Dv were both set to 1 and we chose α = 1.5, β = 1 and γ = 5. Thus,
the densities of predators and prey are oscillatory, which is the situation of primary interest from an ecological point of
view. The initial densities for prey and predator populations were prescribed everywhere on the domain Ω = [0, 1] to be
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u0 = 0.2 and v0 = 0.0328 respectively, leading to spatially homogeneous solutions. A uniform grid was employed with
nodes xj = jh, j = 0, . . . ,M,M = 1/h, and a spatial step size h = 1/1024. We used the time steps ∆t i = 1/2i+1 for
i = 1, . . . , 10. With the above choice of parameters we have Cg = 0.5, and so for stability of the IMSP scheme (see (2.10))
it is sufficient to take ∆t < 1.

As no exact solution is known, the spatially homogeneous finite element solutions were compared with the numerical
solution of the ODE system

dU
dt

= DuLU + U(1 − U) − V (1 − e−γU), (4.26a)

dV
dt

= DvLV + βV (α − 1 − αe−γU), (4.26b)

computed using ode15s in Matlab, with absolute and relative tolerance set to 10−15 and 10−13 respectively. For notational
convenience we denote the solution vector for the ODE approximations of the prey density at T = 20 to be U, where
{U}j = U ≈ U(20), for j = 0, . . . , 1024.

The errors in the prey densities were calculated via

E(U)
i = ∥U − UNi∥ = max

0≤j≤M
|U − Uj

Ni |,

and plotted in Fig. 1(a) with respect to ∆t i for i = 1, . . . , 10 using logarithmic scales for both axes. The slopes of the
convergence curves are both equal to 1, confirming the first-order rate of convergence in time of the IMEX and IMSP schemes.
The numerical results also show that the errors for the IMSP scheme are on the order of 10−1 less than the errors for the
IMEX scheme, confirming the superior accuracy of the IMSP scheme. Similar results were obtained for predator densities
(results omitted).

In Fig. 1(b) we plot predator densities against prey densities at x = 1/2 in the time interval [170, 200]. Using the same
value of the time step (∆t = 0.1), the limit cycle computed with the IMSP scheme is closer to the ‘theoretical’ limit cycle
computedwith ode15s than the limit cycle computedwith the IMEX scheme. Logarithmic scaleswere used for both axes for
a better display of the differences between the curves. The numerical approximations for the IMSP scheme were computed
using the Matlab code fd1dKin2IMSP, which is freely available at http://www.uoguelph.ca/~mgarvie/.

4.2. A two-dimensional example

We compare the performance of the IMSP scheme with the performance of an IMEX scheme, for the numerical solution
of system (1.1a)–(1.1d) in two space dimension, where the kinetics take the following specific Rosenzweig–MacArthur form

f (u, v) = u(1 − u) −
uv

u + α
, (4.27a)

g(u, v) =
βuv
u + α

− γ v, (4.27b)

with α, β, γ > 0 (see Garvie and Trenchea [10] and Medvinsky et al. [26]). The assumption (1.5) is satisfied with
Cg = |β − γ |, as

g(u, v) =
βuv
u + α

− γ v =

 βu
u + α

− γ

v ≤ Cgv.

We repeat a numerical experiment undertaken in Garvie et al. [27], where the domain models a hypothetical lake with an
island, and the unstructuredmeshwas generated by theMatlab program Mesh2d v2.3.1 Themesh is a triangularization of
M = 427 nodes (Fig. 2(a)). As in the one dimensional examples, the parameters were chosen to ensure oscillatory reaction
kinetics, namely: Du = Dv = 1, α = 0.4, β = 0.2 and γ = 0.6. The spatially heterogeneous initial data was prescribed as2:

u0(x, y, 0) = 6/35 − 2 × 10−7(x − 0.1y − 225)(x − 0.1y − 675),

v0(x, y, 0) = 116/245 − 3 × 10−5(x − 450) − 1.2 × 10−4(y − 150).

The reaction–diffusion systemwas approximatedwithdifferent time steps and comparisonsmadebetween theperformance
of the IMEX and IMSP schemes. With the above choice of parameters we have Cg = 0.4, and so for stability of the IMSP
scheme (see (2.10)) it is sufficient to take ∆t < 0.8.

In the first set of experiments we compare accuracy and rates of convergence of the ISMP and the IMEX schemes. As
no exact solution is known, in place of a theoretical solution several candidate solutions are considered when estimating

1 Freely available at https://www.mathworks.com/matlabcentral/fileexchange/.
2 Parameter values and data are given in fe2dnfasttest, downloadable from the above mentioned webpage.

http://www.uoguelph.ca/%7Emgarvie/
https://www.mathworks.com/matlabcentral/fileexchange/
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Fig. 1. (a): Convergence rates and accuracy comparisons between the IMEX and IMSP schemes at T = 20. The two curves have the same slope, thus
confirming the same order of convergence, however, the IMSP solutions are clearly more accurate than the IMEX solutions. (b): limit cycle curves for the
evolution of the predator–prey population in the time interval [170, 200] at the point x = 1/2. The limit cycle computed using the IMSP scheme is closer
to the ‘theoretical’ limit cycle evaluated with ode15s than the limit cycle computed with the IMEX scheme.

the errors. We refer to these candidate solutions as ‘reference solutions’. For the first reference solution the continuous in
time solutions were solved with the Matlab code ode15s, with absolute and relative tolerance set to 10−15 and 10−13. As
with the IMEX and IMSP schemes, the reaction–diffusion system is approximated in space using the standard Galerkin finite
element method. However, for the temporal discretization the resulting 427 coupled ODEs were solved using ode15s. The
remaining two reference solutions were computed using the IMEX and IMSP schemeswith a fine temporal grid∆t = 1/210,
and are denoted IMEXfine and IMSPfine respectively.

The solution vectors for the approximations to the IMEX and IMSP schemes are both denoted UNi and VNi , for n =

0, 1, . . . ,Ni − 1 with Ni = 50/∆t i and ∆t i = 1/2i for i = 1, . . . , 6. For notational convenience we denote the solution
vector for all three reference solutions of prey density at T = 50 to beU, where {U}j = Uj ≈ u(xj, 50), for j = 0, . . . , 427.

The errors in the prey densities were calculated via

E(U)
i = ∥U − UNi∥ = max

0≤j≤427
|Uj − Uj

Ni |,

and plotted in Fig. 2(b) with respect to ∆t i for i = 1, . . . , 6, using logarithmic scales for both axes. The numerical results
are consistent with the first-order rate of convergence of both IMEX and IMSP schemes. Furthermore, the error curves for
the IMSP scheme lie below the error curves for the IMEX scheme, for all three reference solutions, confirming the superior
accuracy of the IMSP scheme. Similar results were obtained for predator densities (results omitted).

Finally, we show in Fig. 3 the finite element approximations of prey densities on the two-dimensional lake domain at
T = 150 using the IMEX and IMSP schemes. The left column of Fig. 3 displays the numerical approximations for the IMSP
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Fig. 2. (a): A hypothetical lake domain with an island and the grid with 427 nodes (see Garvie et al. [27]). (b): convergence rates for the IMEX and IMSP
schemes. For each scheme the rate of convergence has been evaluated with respect to three different reference solutions: ode15s, IMEXfine and IMSPfine.
See the text for further details.

schemewith successively smaller time steps, namely:∆t = 1/3 (Fig. 3(a)),∆t = 1/24 (Fig. 3(c)), and∆t = 1/384 (Fig. 3(e)).
The right column of Fig. 3 displays the numerical approximations for the IMEX scheme with a corresponding reduction in
time steps. The numerical results seem to suggest that the IMSP scheme is more accurate than the IMEX scheme.

The first-order IMEX scheme was implemented using the Matlab code fe2dnfast. We also modified the time-stepping
procedure for the IMEX scheme to generate the Matlab code fe2dnfastIMSP, which implements the first-order IMSP
scheme.3

5. Conclusion

We performed the rigorous numerical analysis of the semi-discrete in time approximations of a first-order implicit-
symplectic (IMSP) scheme for reaction–diffusion systems modelling predator–prey dynamics. The IMSP scheme is a novel
method that effectively approximated the oscillatory dynamics due to a centre-type equilibrium (see Settanni and Sgura
[16]). In this paper we focused our analysis on a specific class of reaction kinetics based on logistic prey growth and ‘Holling
type’ functional response [6] of the predators. This is the case of the well-known Rosenzweig–MacArthur model [7].

We derived semi-discrete a priori bounds on the time step which guaranteed positive and stable solutions. Moreover,
we proved an optimal a priori error estimate for the semi-discrete solutions of the IMSP scheme. Results from numerical
experiments in one and two space dimensions seem to suggest that the IMSP scheme is more accurate than a standard
first-order implicit–explicit (IMEX) scheme for approximating two well-known spatially extended predator–prey models.

Future research could focus on the numerical analysis of the associated fully-discrete problem, by mimicking the
semi-discrete estimates in the fully-discrete case (see e.g. Garvie and Trenchea [10]). However, the numerical analysis

3 Both codes are freely available at http://www.uoguelph.ca/~mgarvie/.

http://www.uoguelph.ca/%7Emgarvie/
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Fig. 3. Two dimensional finite element prey approximations of system (1.1a)–(1.1d) with kinetics (4.27a)–(4.27b) at T = 150 using the IMSP scheme (left
column figures) and the IMEX scheme (right column figures). Plots show successive time step refinement: (a)–(b) ∆t = 1/3, (c)–(d) ∆t = 1/24, (e)–(f)
∆t = 1/384. See the text for the parameter values and initial data.

of the corresponding fully-discrete IMSP problem is tedious and requires additional standard techniques from the finite
elementmethod for elliptic problems, e.g. interpolation error estimates, inverse estimates, and error estimates for numerical
integration [28]. Furthermore, the analysis of the fully-discrete schemes would yield no additional information about the
superiority of IMSP scheme with respect to IMEX scheme, since the advantage of the IMSP methods is due to the time
stepping procedure.

A more promising area of future research is the analysis of the semi-discrete in time formulation of a second-order
implicit-symplectic (IMSP) scheme [13], which is currently in progress.
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