2007-2008 University of Guelph Undergraduate Calendar

XII. Course Descriptions


School of Engineering

Students who are not registered in the B.Eng. degree program may take no more than 3.00 Engineering (ENGG*XXXX) credits.

Some ENGG* courses have priority access restrictions. Enrolment in these courses is restricted to students registered in B.Eng. Degree program. All other students will require a waiver form to be signed by the B.Eng. Program Counsellor.

ENGG*1100 Engineering and Design I F (2-4) [0.75]
Introduction to engineering and design by means of selected problems. Students integrate basic science, mathematics, and complementary studies to develop and communicate engineering solutions to specific needs using graphical, oral, and written means. Application of computer-aided drafting, spreadsheets, and other tools to simple engineering design problems. The practice of professional engineering and the role of ethics in engineering.
Restriction(s): Registration in the Engineering Program
ENGG*1210 Engineering Mechanics I W (3-1) [0.50]
Fundamental principles of Newtonian mechanics; statics of particles in 2-D space; equilibrium of rigid bodies in 2-D; distributed forces; friction, linear and angular momentum of rigid bodies; conservation of energy; principles of impulse and momentum; and, plane motion of rigid bodies.
ENGG*1500 Engineering Analysis W (3-1) [0.50]
Engineering applications of Matrix algebra, vector spaces and computer techniques to solve linear systems. Linear transformations, eigenvalues and eigenvectors, diagonalization and their applications in engineering problems. Complex variable algebra, multi-variables functions, partial derivatives, and maxima and minima.
Co-requisite(s): ENGG*1210, MATH*1210
Restriction(s): MATH*2150
ENGG*2100 Engineering and Design II F (2-4) [0.75]
Progression in engineering design skills with particular emphasis on computer usage in design, oral communication of solutions and team skills. Computer usage in design will include advanced CAD/CAM/CAE tools, structured programming and database management software. An introduction to safety in engineering practice and design. An introduction to the concept of sustainable development.
Prerequisite(s): ENGG*1100, ENGG*1210, ENGG*1500, MATH*1200, PHYS*1130
ENGG*2120 Material Science F (3-2) [0.50]
Study of the mechanical, electrical, magnetic, optical and thermal properties of solids. Atomic order and disorder in solids, single-phase metals, and multiphase materials (their equilibria and micro-structure) are examined as a basis for understanding the causes of material properties. Interwoven throughout the course is an introduction to materials selection and design considerations.
Prerequisite(s): CHEM*1040, PHYS*1130
ENGG*2160 Engineering Mechanics II F (3-1) [0.50]
Fundamental principles of the mechanics of deformable materials; stress and strain; Mohr's circle for transformation of stress and strain; deflection under load; design of beams; shafts; columns and pressure vessels; failure theory and design.
Prerequisite(s): ENGG*1210, ENGG*1500, 0.50 credits in calculus
ENGG*2230 Fluid Mechanics W (3-2) [0.50]
Analysis of steady ideal and viscous fluid flow systems using the Continuity, Bernoulli and Momentum equations. Boundary layer theory is treated in terms of viscous and pressure drag, lift and its importance in heat and mass transfer. Dimensional analysis and dynamic similitude are studied to provide an understanding of flow systems analysis and modeling. Introduction to pipe flow and open channel flow.
Prerequisite(s): ENGG*1210, MATH*1210
ENGG*2400 Engineering Systems Analysis F (3-1) [0.50]
Analytical description and modeling of engineering systems such as mechanical, electrical, thermal, hydraulic biological and environmental systems. Applications of multivariable calculus, linear algebra and differential equations to stimulate and analyse such systems.
Prerequisite(s): ENGG*1210, ENGG*1500, MATH*1200, MATH*1210, PHYS*1130
Co-requisite(s): MATH*2270
ENGG*2410 Digital Systems Design Using Descriptive Languages F (3-3) [0.50]
Review of Boolean algebra, truth tables, Karnaugh maps. Design, synthesis and realization of combinational circuits. Design, synthesis and realization of sequential circuits. VHDL: structural modeling, data flow modeling, synchronous & asynchronous behavior descriptions, algorithmic modeling. Designing with PLDs. Digital design with SM charts. Designing with PGAs and complex programmable logical devices. Hardware testing and design for testability. Hierarchy in large designs. The course will primarily be concerned with the design of multi-input, multi-output digital controllers which provide the central control signals that orchestrate the collection of hardware devices (from SSI to VLSI) found in a digital system. An introduction to FPGA-based, as well as microprocessor-based digital systems design will be given. Design examples will include systems such as UART, microcontroller CPU, ALU and data acquisition system.
Prerequisite(s): (CIS*1650 or CIS*1500), PHYS*1130
ENGG*2450 Electric Circuits W (3-1) [0.50]
Electrical quantities; electrical circuit elements and their characteristics; exponentials, sinusoids and phasors applied to electrical circuits; s-plane representation and pole-zero concepts; steady-state a.c. circuits; general network analysis; magnetic quantities and circuits; demonstration of principles as applied in several engineering fields.
Prerequisite(s): ENGG*2400, PHYS*1130
ENGG*2550 Water Management W (3-0) [0.50]
The influence of fundamental engineering and hydrologic principles on the choices available for management of water on a watershed basis is demonstrated for representative techniques used in management for water supply, irrigation, flood control, drainage and water pollution control. Selected problems are studies to reveal the technical, environmental, legal, jurisdiction, political, economic and social aspects of water management decisions.
Prerequisite(s): (CHEM*1040 or CHEM*1310), GEOG*2000
ENGG*2560 Environmental Engineering Systems W (3-2) [0.50]
Analysis techniques for natural and engineered systems including chemical, physical and biological processes. Mass balance analysis for steady state and unsteady state situations. Analysis under both equilibrium and non-equilibrium conditions. Reactor types including batch, plug-flow, CSTR. Noise pollution, control and prevention.
Prerequisite(s): CHEM*1050, MATH*2270
ENGG*2660 Biological Engineering Systems I W (3-1) [0.50]
Mathematical description and identification of biological systems; through mass and energy balances; reactions in biological systems; biomedical, food, and bio-processing applications.
Prerequisite(s): ENGG*2400, MATH*2270, MICR*1020
Co-requisite(s): BIOC*2580
ENGG*3050 Embedded Reconfigurable Computing Systems W (3-2) [0.50]
This course introduces the students to the analysis, synthesis and design of embedded systems and implementing them using Field Programmable Gate Arrays. Topics include: review of digital design concepts; Programmable Logic Devices; Field Programmable Logic Devices; physical design automation (partitioning, placement and routing); Hardware Descriptive Languages; VHDL; Verilog; High Level Languages; System-C; Handle-C; Fixed Point and Floating Point Arithmetic; Hardware Accelerators; Reconfigurable Instruction Set Computers; Hardware Software Co-design techniques; Application of Field Programmable Logic in Embedded Systems. (First offering - Winter 2010)
Prerequisite(s): ENGG*3380, ENGG*3450
ENGG*3100 Engineering and Design III W (3-2) [0.75]
This course combines the knowledge gained in the advanced engineering and basic science courses with the design skills taught in ENGG*1100 and ENGG*2100 in solving open-ended problems. These problems are related to the student's major. Additional design tools are presented, including model simulation, sensitivity analysis, linear programming, knowledge-based systems and computer programming. Complementing these tools are discussions on writing and public speaking techniques, codes, safety issues, environmental assessment and professional management. These topics are taught with the consideration of available resources and cost.
Prerequisite(s): Registration in the B.Sc.(Eng.) program, ENGG*2100, ENGG*2230, ENGG*2400, ENGG*3260 and, for the specific majors: BIOE, (ENGG*2150 or ENGG*2160), ENGG*2660; ESC, ENGG*3390; ENVE, (ENGG*3180 or ENGG*3360), ENGG*3590, ENGG*3650; WRE, ENGG*3590, ENGG*3650
Restriction(s): Students must have a minimum cumulative average of 60% or higher in ALL ENGG courses.
ENGG*3150 Engineering Biomechanics W (3-2) [0.50]
Basic concepts of biological material structure, properties, adaptation and remodeling; viscoelasticity in biological materials and techniques for modeling viscoelastic material behaviour; 2-dimensional and 3-dimensional joint kinematic analysis techniques; muscle mechanics and optimization techniques; current techniques in laboratory instrumentation and biomedical applications.
Prerequisite(s): ENGG*2160
Restriction(s): ENGG*2150
ENGG*3160 Biological Engineering Systems II F (3-2) [0.50]
Mass transfer in biological systems: concepts; gas-liquid mass transfer; membrane transport processes; and heterogeneous reactions. Applications may include fermenter aeration, tissue perfusion, mass transfer limitations in biofilms, microbial flocs and solid tumours, protein recovery and drug delivery.
Prerequisite(s): ENGG*2230, ENGG*2660
ENGG*3170 Biomaterials F (3-2) [0.50]
Physical properties of natural and synthetic (e.g. stainless steel, polymers) materials used in biological engineering applications. Topics will include microstructure and mechanical properties of typical biomaterials, quantification of advanced material properties and behaviours, fabrication, compatibility, biodegradation and mechanical failure. Typical applications will include processing of biomaterials as well as equipment and implant design.
Prerequisite(s): ENGG*2120
ENGG*3180 Air Quality F (3-2) [0.50]
The study of the transport, transformation and deposition processes associated with air pollutants. The chemical and biological nature, impacts, and sources of air pollutants. The physical aspects of the atmospheric boundary layer. The mathematical treatment of diffusion in a homogeneous field in a boundary layer. Regulatory approaches worldwide and their use of air quality modeling. The use of models for the design of stacks and monitoring networks.
Prerequisite(s): ENGG*2230, (ENGG*2560 or ENGG*2660)
Co-requisite(s): ENGG*3260
Restriction(s): ENGG*3360
ENGG*3240 Engineering Economics F (3-0) [0.50]
Principles of project evaluation; analysis of capital and operating costs of engineering alternatives, benefit-cost ratio; break-even studies, evaluations recognizing risk, replacement and retirement of assets; tax considerations, influence of sources of funds.
Prerequisite(s): ENGG*2400, ENGG*2450, MATH*1210, MATH*2270
Restriction(s): Registration in the Engineering program.
ENGG*3260 Thermodynamics F (3-1) [0.50]
Macroscopic thermodynamics and its applications to engineering analysis and design. First and second laws and applications to closed and flow systems, both with and without reaction; properties of pure substances and solutions; introduction to phase and reaction equilibrium. Applications include gas-vapour systems (psychrometrics and beyond), power and refrigeration cycles, raoult and henry law solution behavious, flame temperature calculations, semiconductor device fabrication.
Prerequisite(s): CHEM*1040, ENGG*2230, ENGG*2400, ENGG*2450, MATH*2270
ENGG*3340 Geographic Information Systems in Environmental Engineering F (3-0) [0.50]
Geographical information system structure and functions. Data structuring and application program development. Data input, display and analysis. Applications in environmental engineering and natural resource development/management. Students will be able to use a GIS software package to build geographical information systems.
Prerequisite(s): (CIS*1500 or CIS*1600), (1 of MATH*1000, MATH*1080, MATH*1200)
ENGG*3380 Computerized Organization and Design F (3-2) [0.50]
Detailed examination of modern computer organization and techniques for microprocessor architecture design. Topics include - CPU design; instruction set design, addressing modes, operands; data flow design: internal bus structure, data flow signals, registers; control sequence design: hardwired control, decoding, microprogramming; architecture classes: CISC, RISC, and DSP; Memory organization; performance. Students must complete a term project that includes design, implementation, and demonstration of a CPU using a hardware descriptive language like VHDL.
Prerequisite(s): ENGG*2410
ENGG*3390 Signal Processing F (3-2) [0.50]
This course will establish the fundamental analysis and design techniques for signal processing systems. Topics covered include: definition and properties of linear time-invariant systems; impulse response and convolution; continuous-time Laplace transform, Fourier series, Fourier transform; discrete-time Fourier transform, discrete-time Fourier series, fast Fourier transform, Z transform; complex frequency response; filter analysis and design for both continuous and discrete time systems. Students will be able to design continuous-time filters and both design and implement discrete-time digital filters using computer-based tools.
Prerequisite(s): ENGG*2400
ENGG*3410 Systems and Control Theory W (3-2) [0.50]
Modeling, performance analysis and control with potential application to engineering, physical and biological systems. Topics include modeling in time, Laplace and frequency domains. Performance and stability by methods of Hurwitz, Routh, Bode, and Nyquist. Control by ON/OFF and PID Controllers.
Prerequisite(s): ENGG*2400, MATH*2270
Co-requisite(s): ENGG*2450
ENGG*3430 Heat and Mass Transfer W (3-1) [0.50]
Analysis of steady and transient thermal systems involving heat transfer by conduction, convection and radiation and of mass transfer by molecular diffusion and convection. Other topics include the thermal analysis of heat exchangers and heat transfer systems involving a change of state.
Prerequisite(s): ENGG*2230, ENGG*3260, MATH*2270
ENGG*3450 Electrical Devices F (3-2) [0.50]
Semiconductors materials, Silicon, Germanium and other semi-conductors' material, Doping and effects of extrinsic material introduction, Conduction in metals and semi-conductors, electrical and thermal characteristics of diodes and transistors; principles of modern electronic devices and their applications in circuits; diodes; bipolar and field effect transistors; circuit integration; operational amplifiers; logic gates.
Prerequisite(s): ENGG*2450
ENGG*3470 Mass Transfer Operations W (3-2) [0.50]
Application of mass transfer principles in the natural and engineered systems. Mass transport in the multi-media fate of contaminants in and between air, water and land. Design and analysis of separation processes for emission and pollutant prevention.
Prerequisite(s): ENGG*2230, ENGG*3260, MATH*2270
Co-requisite(s): ENGG*3430
ENGG*3490 Introduction to Mechatronic Systems Design W (3-2) [0.75]
This course covers the design of mechatronic systems, which are synergistic, combinations of components and controls drawn from mechanical engineering, electronics, control engineering, and computer science. The course emphasizes the integration of these areas through the design process employing the two skills of (1) modeling, analysis, control design, and computer simulation of dynamic systems, and (2) experimental validation of models, analysis and the understanding of the key issues of hardware implementation. The two skills are developed though assignments emphasizing analytical analysis with complementary laboratory exercises. The material covered includes mechatronic system design; a review of kinematics, electronics, modeling, simulation, signals and control; control architectures; sensors including vision; and actuators.
Prerequisite(s): ENGG*3450
Co-requisite(s): ENGG*3410
Restriction(s): ENGG*3400
ENGG*3590 Water Quality F (3-3) [0.50]
This course builds on the student's experience in chemistry, biology, physics and fluid mechanics, and provides an engineering perspective on: (i) standard methods of water quality analysis for physical, chemical and biological characteristics of water; (ii) significance and interpretation of analytical results, (iii) modeling of water quality in natural systems and (iv) introduction to engineered water and wastewater treatment systems.
Prerequisite(s): ENGG*2230, ENGG*2560, (BIOL*1040 or MICR*1020), STAT*2120
ENGG*3640 Microcomputer Interfacing F (3-3) [0.50]
Interfacing microcomputers to external equipment. Topics include peripheral devices, hardware interfaces, device driver software and real time programming. Advanced programming: debugging of embedded systems, data structures and subroutine calls, high-level system programming. Interrupts and resets, real time events, signal generation and timing measurements. Synchronous and asynchronous serial communication. Parallel I/O ports and synchronization techniques. I/O interfacing, microcomputer busses, memory interfacing and direct memory access (DMA). Data acquisition topics include signal conditioning analog to digital conversion and digital signal processing.
Prerequisite(s): ENGG*2410
Co-requisite(s): ENGG*3390
Restriction(s): ENGG*4640
ENGG*3650 Hydrology F (3-1) [0.50]
Quantitative study of natural water circulation systems with emphasis on basic physical principles and interrelationships among major processes; characteristics of mass and energy; inputs to and output from watersheds; factors governing precipitation occurrence, evaporation rates, soil-water storage changes, groundwater recharge and discharge, run-off generation; methods of streamflow analysis; mathematical modeling.
Prerequisite(s): (ENGG*2230 or MET*2030), (MATH*1210 or MATH*2080), (STAT*2120 or STAT*2040), and competency in computing
ENGG*3670 Soil Mechanics F (3-2) [0.50]
Relations of soil physical and chemical properties to strength; soil water systems and interactive forces. Visco-elastic property and pressure-volume relationships of soil systems. Stress-strain characteristics of soil under dynamic loads. Application of engineering problems. Laboratory and field investigation methods.
Prerequisite(s): ENGG*2120, ENGG*2230
ENGG*3830 Bio-Process Engineering F (3-1) [0.50]
Application of engineering principles to the processing of biological products in the biological and food industry. Analysis and design of unit processes such as sedimentation, centrifugation, filtration, milling and mixing involving rheology and non-Newtonian fluid dynamics of biological materials. Analysis of heat and mass balances for drying evaporation, distillation and extraction.
Prerequisite(s): ENGG*2230, ENGG*2660
Co-requisite(s): ENGG*3260
ENGG*4080 Analog Integrated Circuits F (3-0.5) [0.50]
The purpose of this course is to describe the operating principles of analog integrated circuits and to teach how to design and use such circuits. These circuits include analog and switched-capacitor filters, analog-to-digital and digital-to-analog converters, amplifiers, oscillators, circuits for radio-frequency and optical communications, readout channels for integrated sensors, and analog integrated circuits for mechatronics and bioengineering. The main emphasis is on device models, circuit operation, and design techniques. (First offering - Fall 2010)
Prerequisite(s): ENGG*3450
ENGG*4110 Biological Engineering Design IV F,W (2-6) [1.00]
Capstone design project in the Biological Engineering program. Teams of 3-4 students apply engineering analysis and design principles to a problem in a biological system or process. A completely specified solution at the level of preliminary or final design is required, including assessment of socio-economic and environmental impact. Teams produce reports and a poster presentation to a professional standard. Ethics and law case studies relevant to professional engineering practice are discussed.
Prerequisite(s): All 1000 and 2000 level core credits, ENGG*3100.
Restriction(s): Registration in semester 8 (last semester) of the B.Sc.(Eng.) program and in a max. of 3.25 credits registration. Student must have a minimum cumulative average above 60% in ALL ENGG courses. Instructor consent required.
ENGG*4120 Engineering Systems and Computing Design IV F,W (2-6) [1.00]
Capstone design project in the Engineering Systems and Computing program. Teams of 3-4 students apply engineering analysis and design principles to a problem involving control system, computer hardware or computer software technology. A completely specified solution at the level of preliminary or final design is required, including assessment of socio-economic and environmental impact. Teams produce reports and a poster presentation to professional standard. Ethics and law case studies relevant to professional engineering practice are discussed.
Prerequisite(s): All 1000 and 2000 level core credits, ENGG*3100.
Restriction(s): Registration in semester 8 (last semester) of the B.Sc.(Eng.) program and in a max. of 3.25 credits registration. Students must have a minimum cumulative average of 60% or higher in ALL ENGG courses. Instructor consent required.
ENGG*4130 Environmental Engineering Design IV F,W (2-6) [1.00]
Capstone design project in the Environmental Engineering program. Teams of 3-4 students apply engineering analysis and design principles to a problem involving control system, computer hardware or computer software technology. A completely specified solution at the level of preliminary or final design is required, including assessment of socio-economic and environmental impact. Teams produce reports and a poster presentation to professional standard. Ethics and law case studies relevant to professional engineering practice are discussed.
Prerequisite(s): All 1000 and 2000 level core credits, ENGG*3100.
Restriction(s): Registration in semester 8 (last semester) of the B.Sc.(Eng.) program and in a max. of 3.25 credits registration. Students must have a minimum cumulative average of 60% or higher in ALL ENGG courses. Instructor consent required.
ENGG*4150 Water Resources Engineering Design IV F,W (2-6) [1.00]
Capstone design project in the Water Resources Engineering program. Teams of 3-4 students apply engineering analysis and design principles to a problem involving control system, computer hardware or computer software technology. A completely specified solution at the level of preliminary or final design is required, including assessment of socio-economic and environmental impact. Teams produce reports and a poster presentation to professional standard. Ethics and law case studies relevant to professional engineering practice are discussed.
Prerequisite(s): All 1000 and 2000 level core credits, ENGG*3100.
Restriction(s): Registration in semester 8 (last semester) of the B.Sc.(Eng.) program and in a max. of 3.25 credits registration. Students must have a minimum cumulative average of 60% or higher in ALL ENGG courses. Instructor consent required.
ENGG*4250 Watershed Systems Design F (3-2) [0.75]
Hydrological analysis of watershed systems including stream flow for design of structures and channels, flood warning, flood plain mapping, low-flow characteristics. Hydraulic analysis applied to design of dams, reservoirs, control structures, energy dissipation structures, bridges and culverts. Analysis of steady flow profiles, flood waves, and sediment transport, for design of natural and constructed channels, and protective works for rivers to achieve environmentally sustainable land use in watershed systems.
Prerequisite(s): ENGG*2230, ENGG*3650
ENGG*4260 Water and Wastewater Treatment Design W (3-2) [0.75]
Application of design principles for a variety of water purification systems, including drinking water, municipal wastewater, industrial wastewater and agricultural wastewater. This involves the design of physical, chemical and biological unit operations, and evaluating the optimum combination to satisfy the given design constraints and criteria. The optimum designs integrate engineering science, basic science, economics, and occupational health and safety for the workers and the public.
Prerequisite(s): ENGG*3100, ENGG*3590
ENGG*4280 Digital Process Control Design W (3-2) [0.75]
Design, analysis synthesis and simulation of process control and automation systems. Automation hardware, process compensation techniques and P.I.D. controllers, design and dynamics of final control elements, computer control and the microprocessor.
Prerequisite(s): ENGG*3410
ENGG*4300 Food Processing Engineering Design F (3-2) [0.75]
Formulation of mathematical models to describe food processing operations and the response of foods to such operations. Process evaluation, development and computer-aided design of operations such as thermal processes and food freezing. The influence of water activity and structure on the enzymatic, cellular, organic and structural systems of foods. The properties of powders and particulate foods and mechanical operations with solid foods.
Prerequisite(s): ENGG*3260, ENGG*3830
ENGG*4330 Air Pollution Control F (3-2) [0.75]
Analysis and design of atmospheric pollution control techniques. Techniques considered include both in-process solutions as well as conventional end-of-pipe treatments. Pollutants covered include gaseous, particulate, metals and trace organics.
Prerequisite(s): ENGG*3180, ENGG*3260
ENGG*4340 Solid and Hazardous Waste Management F (3-2) [0.50]
Solid waste generation rates and waste composition. Integrated waste management: collection, recovery, reuse, recycling, energy-from-waste, and landfilling. Biological treatment of the organic waste fraction - direct land application, composting, anaerobic digestion. Environmental impact of waste management and sustainable development. Cross media issues related to solid waste disposal. An introduction to hazardous waste management and treatment methods.
Prerequisite(s): ENGG*2560 or ENGG*2660
ENGG*4360 Soil-Water Conservation Systems Design F (3-2) [0.75]
Properties of soils and land use governing the occurrence and magnitude of overland flow, soil erosion, infiltration, percolation of soil water, and variations in soil water storage. Design of soil and water management systems and structures to control soil erosion and protect water quality for environmentally and economically sustainable land use planning. Design of surface and subsurface drainage system for rural land. Design of sprinkler and trickle irrigation systems.
Prerequisite(s): ENGG*2230, ENGG*3650, ENGG*3670
ENGG*4370 Urban Water Systems Design F (3-2) [0.75]
Estimation of water quantity and quality needed for urban water supply and drainage. Design of water supply, pumping systems, pipe networks and distributed storage reservoirs from analysis of steady and transient, pressurized and free surface flow. Rates of generation of flows and pollutants to sanitary and storm sewers, design of buried pipe and open channel drainage systems with structures for flow and pollution control. Modeling of water systems for sustainable urban development.
Prerequisite(s): ENGG*2230, ENGG*3650
ENGG*4380 Bioreactor Design F (3-2) [0.75]
Modeling and design of batch and continuous bioreactors based on biological growth kinetics and mass balances. Gas-liquid mass transfer for aeration and agitation instrumentation and control.
Prerequisite(s): ENGG*3160
ENGG*4390 Bio-instrumentation Design F (3-2) [0.75]
Theory and selection criteria of devices used in measurements in biological systems; design of complete measurement systems including transducers, signal conditioning and recording components; error analysis. Differences between measurements in biological and physical systems.
Prerequisite(s): ENGG*3450
ENGG*4400 Biomechanical Engineering Design F (3-2) [0.75]
Concept development, design, modeling, manufacture and testing of medical implants and tools. This course will investigate the biomechanical factors influencing design, regulatory issues, current development trends, and the possible future of medical implant technology.
Prerequisite(s): ENGG*2120,
Co-requisite(s): ENGG*3170
ENGG*4420 Real-time Systems Design F (3-3) [0.75]
Hard versus soft real-time systems. Real-time issues in computer architecture. Clocks and timing issues. Correctness and predictability. Structuring and describing real-time software. Clock Synchronization. Real-time objects and atomicity. Validation of timing constraints. Formal Real-time systems design and analysis techniques: process-based, event-based, and Petri Nets. Resource management and control. Real-time scheduling and task allocation (Uni-processor and Multi-processor). Design for dependability, reliability and fault tolerance. Real-time programming using ADA. Survey of Real-time operating systems. Scenarios of real-time systems.
Prerequisite(s): CIS*3110
ENGG*4430 Neuro-Fuzzy and Soft Computing Systems W (3-0) [0.50]
Introduction to Fuzzy systems; Fuzzy Sets; Fuzzy Rules and Fuzzy Reasoning; Fuzzy Inference Systems; Fuzzy Control; Introduction to Neural and Automata Networks; Neural Network Paradigms; Supervised Learning Neural Networks, Learning from Reinforcement, Unsupervised Learning and Other Neural Networks; Neurocontrol; System Identification; Controller Training, Robust Neurocontrol; Adaptive Neuro-Fuzzy Inference Systems, Coactive Neuro-Fuzzy Modeling; Reinforcement Learning Control, Gradient-Free Optimization, Feedback Linearization and Sliding Control; Applications: Quality Assurance, Decision Aid Systems, Automatic Character Recognition, Inverse Kinematics Problems, Automobile MPG (Miles Per Gallon) Prediction, System Identification, Channel Equalization, Adaptive Noise Cancellation, Process Control.
Prerequisite(s): ENGG*3410
Co-requisite(s): ENGG*4280
ENGG*4450 Large-Scale Software Architecture Engineering F (3-2) [0.50]
This course introduces the students to the analysis, synthesis and design of large-scale software systems at the architectural level. This is in contrast to the algorithmic and data structure viewpoint of most software systems. Large-scale software systems are complex, execute on many processors, under different operating systems, use a particular or many language(s) of implementation, and typically rely on system layers, network connectivity, messaging and data management and hardware interfacing. The material covered includes architectural styles, case studies, architectural design techniques, formal models, specifications and architectural design tools. The laboratory sessions will expose the students to analyzing and redesigning an existing large-scale software system.
Prerequisite(s): (CIS*2420 or CIS*2520), ENGG*2100
ENGG*4460 Robotic Systems F (3-3) [0.50]
This course covers robot technology fundamentals, mathematical representation of kinematics, planning and execution of robot trajectories, introduction to robot languages, programming of robotic systems, different application domains for robots (e.g. assembly, manufacturing, medical, services, etc.), and robot sensors. The goal of this course is to provide students with a comprehensive background, approaches and skills to apply robotics technology to real world engineering applications and problems.
Prerequisite(s): ENGG*1500, ENGG*2400
ENGG*4510 Assessment & Management of Risk W (3-1) [0.50]
This course will develop the bases by which risk to human health and the environment can be assessed. Issues of hazardous waste cleanups, permitting of water and air discharges, food safety, flood protection, as examples, are addressed. The course also examines how decisions are made to manage the risks to acceptable levels.
Prerequisite(s): STAT*2040 or STAT*2120
ENGG*4550 VLSI Digital Design F (3-2) [0.50]
This course introduces the students to the analysis, synthesis and design of Very Large Scale integration (VLSI) digital circuits and implementing them in silicon. The topics of this course are presented at three levels of design abstraction. At device level: MOS diode; MOS (FET) transistor; interconnect wire. At circuit level: CMOS inverter; static CMOS gates (NAND, NOR); dynamic gates (NAND, NOR); static latches and registers; dynamic latches and registers; pipelining principles and circuit styles; BICMOS logic circuits. At system level; implementation strategies for digital ICs; interconnect at system level; timing issues in digital circuits (clock structures); the adder; the multiplier; the shifter; memory design and array structure; low power design circuits and architectures. (First offering - Fall 2010)
Prerequisite(s): ENGG*2410, ENGG*2450, ENGG*3450
ENGG*4560 Embedded System Design W (3-3) [0.75]
This course introduces the basic principles of embedded system design. It utilizes advanced hardware/software abstractions to help design complex systems. Topics include: Design of embedded CUPs; Embedded Architecture Cores; System-On-Chip Designs and Integration Using Processor Cores and Dedicated Core Modules; Embedded Computing Platforms; Embedded Programming Design and Analysis; Processes and Operating Systems; Networks for Embedded Systems; Distributed Embedded Architectures; Design Examples that Target Tobotics, Automobile, and Communication Systems. (First offering - Winter 2011)
Prerequisite(s): ENGG*4550
Co-requisite(s): ENGG*3050
ENGG*4660 Medical Image Processing W (3-2) [0.50]
This course covers the fundamentals of medical imaging from both the processing of digital images and the physics of image formation. Image processing topics covered include: fundamentals of resolution and quantization; linear systems as applied to multi-dimensional continuous and discrete systems including the relationship between the point spread functions and modulation transfer function; point operations such as contrast enhancement, histogram equalization, and H and D curves, geometric operations for distortion correction, including interpolation methods; linear filtering in both the spatial and spatial-frequency domains; and image restoration and inverse filtering. The physics of the following imaging modalities with emphasis on the parameters which effect image quality will be covered: x-ray radiology, MRI, ultrasound, and nuclear medicine.
Prerequisite(s): ENGG*3390