ResearchIntranet
nonaffine deformations

Soft Materials Laboratory

Group photo taken outdoors on a platform overlooking the ocean

About Us

In soft materials such as micron-sized colloids in suspension, the importance of thermal fluctuations and Brownian motion allows an efficient sampling of configuration space, giving rise to a rich diversity of equilibrium self-assembled structures with varying degrees of order.

In our research group, we wish to expand our understanding of collective processes to dynamical regimes where time-dependent energy injection and long-ranged hydrodynamic interactions compete with microscopic interactions and give rise to complex, emergent dynamical structures.

The long-term goal of our program is to make soft materials that, like biological organisms, consume energy, live out of equilibrium, and exhibit hierarchical, multi-level function.

Work with us

Prospective graduate students: please look at the research areas, coupled with the publications listed, to determine if our work interests you, and then contact Anand Yethiraj. Indicate which paper you looked at, and which subject area is of most interest to you to guarantee a prompt response!

NameRole
Anand YethirajFaculty
Anas AlhasanatPhD Candidate
Majid BahraminasrPhD Candidate
Ashish JoyPhD Candidate

Research Overview

Solid-solid transformations are technologically important in shape-memory materials, metals, and alloys. A deep understanding of the microstructural changes and the underlying kinetic mechanisms is still lacking. The kinetics of fluid-gel transitions are difficult to study because of the lack of a convenient control parameter. In our group, we use electric-field-induced dipolar interactions as a switch to induce phase transition quenches, allowing us to study kinetics, and to probe reversibility and irreversibility. [PhD work of Shivani Semwal. Collaborators: Ivan Saika-Voivod (MUN), Alfons van Blaaderen (Utrecht), Priti Mohanty (KIIT-Bhubaneswar), Peter Schurtenberger (Lund), Surajit Sengupta and Saswati Ganguly (TIFR-Hyderabad)]

The living cell is a crowded macromolecular environment. While crowding has been viewed primarily as an excluded volume hard-sphere effect, proteins are charged and have hydrophobic and polar groups, so non-specific soft interactions are important. In our research, we have used diffusion NMR to study diffusion in macromolecular complex fluids [see our review: Barhoum, S., Palit, S., & Yethiraj, A. (2016). Progress in Nuclear Magnetic Resonance Spectroscopy, 94, 1-10.].

Swomitra Palit et al., "Combining diffusion NMR and SANS enables precise measurements of polymer chain compression in a crowded environment", Phys. Rev. Lett, 118, 097801 (2017)
The bottom-up approach: Combining diffusion NMR with small-angle neutron scattering (SANS) and rheology, we study structure and microscopic dynamics in a polymer-colloid model system for crowding. [PhD work of Swomitra Palit (2018) and Venketesh Thrithamara. Collaborators: Stefan Wallin (MUN), Yun Liu (NIST)]

Swomitra Palit, Lilin He, William A. Hamilton, Arun Yethiraj, Anand Yethiraj, “Combining diffusion NMR and SANS enables precise measurements of polymer chain compression in a crowded environment”, Phys. Rev. Lett, 118, 097801 (2017).

The top-down approach: To contrast with our model-system approach, we are also examining the dynamics of a disordered protein (alpha-synuclein) in a realistic biological crowding environment made of lysed bacterial cells. [PhD work of Yanitza Trosel. Collaborator: Valerie Booth (MUN)]

PhD work of Somayeh Khajehpour and Atul Varshney. Collaborators: Shankar Ghosh (TIFR-Mumbai) and Atul Varshney (IISER-Bhubaneswar)

We stumbled upon a beautiful model system for tunable hydrodynamics by re-discovering the electrohydrodynamics of oil drops in an immiscible leaky dielectric oil, originally discovered by G. I. Taylor [Melcher, J. R., & Taylor, G. I. (1969). Annual Review of Fluid Mechanics, 1, 111-146.]. There were two key differences in our point of view: (a) While previous work on electrohydrodynamics studied individual drops, we examined collective behaviors and interactions of many drops; (b) In our work, we have employed high-speed imaging and used electric field frequency as a tuning parameter to control the hydrodynamic lengthscale. The outcome of this new point of view was rich dynamical phenomena as a function of field strength and frequency, with ordered drop arrays at high frequency, chaotic flows at low frequency, and multiscale turbulence at DC arising from anomalous super-diffusion in the fluid. The design of new materials using these novel interactions remains un-explored.

We are making active nanoparticles that could serve as active crowders and can be studied by new(-ish) optical techniques such as fluoresecence dynamic difference microscopy or fluoresence correlation spectroscopy. [M.Sc. Anas Alhasanat, with the help of undergraduate MUCEP students. Collaborators: Francesco Piazza & Josef Hamacek (Centre Biophysique Moléculaire, Orléans)]

Funding Sources

Publications

  1. Majid Bahraminasr, Anand Yethiraj, “Electro-rheo-imaging of a non-equilibrium emulsion: microstructures and a multi-state switchable viscous response”, submitted (2024).
  2. Tatsuo Izawa, Lesley James, Anand Yethiraj, “Stability of saline surfactant foams: a study at macroscopic and bubble scales”, submitted to Proc. Royal Soc. A (2024).
  3. Ashish Joy, Shivani Semwal, Anand Yethiraj, “Frequency-dependent microelectrophoresis study of colloids with tunable surface charge”, J. Phys. Chem. Lett. (2024). https://doi.org/10.1021/acs.jpclett.4c00553 [pdf] [Supporting Info]
  4. Stephen J. Spencer, Venketesh Thrithamara Ranganathan, Anand Yethiraj, G. Todd Andrews, “Concentration Dependence of Elastic and Viscoelastic Properties of Aqueous Solutions of Ficoll and Bovine Serum Albumin by Brillouin Light Scattering Spectroscopy”, Langmuir (2024) [Arxiv][pdf]
  5. Sina Heravi, Anand Yethiraj, Valerie Booth, “The effects of biological crowders on fibrillization, structure, diffusion, and conformational dynamics of α-synuclein”, Protein Science 33, e4894 (2024). https://doi.org/10.1002/pro.4894 [pdf] [Supplementary Info]
  6. Ahmed Alsharief, Xili Duan, Anand Yethiraj, Yuri Muzychka, “Wettability Effects of Curved Superhydrophobic Surfaces on Drag Reduction in Taylor-Couette Flows of Water and Oil”, J. Fluids Eng. 146, 011402 (2024). https://doi.org/10.1115/1.4063435
  7. Jinesh Machale, Dorcas Annung Akrong, Omid Mohammadzadeh, Ali Telmadarreie, Anand Yethiraj, Lesley Anne James, “Foam-Assisted Enhanced Oil Recovery: Bridging the Gap between Theory and Practice”, accepted, SCA (2023).
  8. Yanitza Trosel, Liam Patrick Gregory, Valerie Booth, Anand Yethiraj, “Diffusion NMR and rheology of a model polymer in bacterial cell lysate crowders”, Biomacromolecules 24, 6, 2469–2478 (2023). https://doi.org/10.1021/acs.biomac.2c01534 [pdf][Supplementary Info]
  9. Saswati Ganguly, Sofi Nojd, Anand Yethiraj, Peter Schurtenberger, Priti S. Mohanty, “Crystal to crystal transformation in soft ionic microgels: Kinetics and the role of local mechanical susceptibilities”, Phys. Rev. Mater., 7, L080401 (2023). DOI: 10.1103/PhysRevMaterials.7.L080401 [pdf]
  10. Marco Graziano, Swomitra Palit, Anand Yethiraj, Simone Immler, Matthew J.G. Gage, Craig F. Purchase, “Non-Newtonian viscoelastic properties of salmon ovarian fluid have biophysical implications for sperm-egg interactions”, J. Exp. Biol. 226, jeb244712 (2023). https://doi.org/10.1242/jeb.244712 [pdf]
  11. Venketesh Thrithamara Ranganathan, Saman Bazmi, Stefan Wallin, Yun Liu, and Anand Yethiraj, “Is Ficoll Colloid or Polymer? A Multitechnique Study of a Prototypical Excluded-Volume Macromolecular Crowder”, Macromolecules 55, 9103−9112 (2022). https://doi.org/10.1021/acs.macromol.2c00677 [pdf]
  12. Shivani Semwal, Cassandra Clowe-Coish, Ivan Saika-Voivod and Anand Yethiraj, “Tunable Colloids with Dipolar and Depletion Interactions: Toward Field-Switchable Crystals and Gels”, Physical Review X 12, 041021 (2022). https://journals.aps.org/prx/abstract/10.1103/PhysRevX.12.041021 [pdf][SI-pdf][SI-movie]
  13. Suhad Sbeih, Priti S. Mohanty, Anand Yethiraj, Michael R. Morrow, “2H NMR Study of Polymer Segmental Dynamics at Varying Cross-Linking in Poly(N‑isopropylacrylamide) Microgels”, Langmuir 37, 13664-13675 (2021). [https://doi.org/10.1021/acs.langmuir.1c02269] [pdf]
  14. Swomitra Palit, Lilin He, William A. Hamilton, Arun Yethiraj, Anand Yethiraj, “Palit et al. reply”, Phys. Rev. Lett. 123, 239803 (2019). [pdf] Reply to a Comment by Le Coeur et al. [pdf]
  15. Suhad Sbeih, Priti S. Mohanty, Michael R. Morrow, Anand Yethiraj, “Structural parameters of soft PNIPAM microgel particles as a function of crosslink density”, J. Colloid Interface Sci. 552, 781 – 793 (2019). [pdf]
  16. Somayeh Khajehpour Tadavani, Anand Yethiraj, “Anomalous dynamics in tracer-particle motions in an electrohydrodynamically driven oil-in-oil system”, Phys. Rev. E 98, 022602 (2018). arXiv:1805.03242. [pdf]
  17. Swomitra Palit, Somayeh Khajehpour Tadavani, Anand Yethiraj, “Realization of a stable, monodisperse water-in-oil droplet system with micro-scale and nano-scale confinement for tandem microscopy and diffusion NMR studies”, Soft Matter 14, 448-459 (2018). doi: 10.1039/C7SM01508A [pdf]
  18. Somayeh Khajehpour Tadavani, Anand Yethiraj, “Tunable hydrodynamics: A field-frequency phase diagram of a non-equilibrium order-to-disorder transition”, Soft Matter 13, 7412 (2017). doi: 10.1039/C7SM01145H [pdf]
  19. Swomitra Palit, Lilin He, William A. Hamilton, Arun Yethiraj, Anand Yethiraj, “The effect of crowder charge in a model polymer–colloid system for macromolecular crowding: polymer structure and dynamics”, J. Chem. Phys. 147, 114902 (2017). [pdf]
  20. Swomitra Palit, Anand Yethiraj, ” Dynamics and cluster formation in charged and uncharged Ficoll70 solutions”, J. Chem. Phys. 147, 074901 (2017). doi: 10.1063/1.4986366 [pdf]
  21. Saswati Ganguly, Priti Mohanty, Peter Schurtenberger, Surajit Sengupta, Anand Yethiraj, “Contrasting the dynamics of elastic and non-elastic deformations across an experimental colloidal martensitic transition”, Soft Matter 13, 4689 – 4697 (2017). DOI: 10.1039/C7SM00623C [pdf]
  22. Edward Hayden, Zena Aljabal, Anand Yethiraj, “Frequency-dependent solvent impedance and colloid micro-electrophoresis measurements in partially polar solvents”, Langmuir 33, 4781 – 4788 (2017). DOI: 10.1021/acs.langmuir.7b00816 [pdf]
  23. Raheema Aslam, Sergio Ardanza-Trevijano, Kristin M. Poduska, Anand Yethiraj, Wenceslao González-Viñas, “Quantifying disorder in colloidal films spin-coated onto patterned substrates”, Phys. Rev. E 95, 032607 (2017). DOI: 10.1103/PhysRevE.95.032607 [pdf]
  24. Swomitra Palit, Lilin He, William A. Hamilton, Arun Yethiraj, Anand Yethiraj, “Combining diffusion NMR and SANS enables precise measurements of polymer chain compression in a crowded environment”, Phys. Rev. Lett, 118, 097801 (2017). DOI: 10.1103/PhysRevLett.118.097801 [pdf], [Supplemental]
  25. Somayeh Khajehpour Tadavani, James R. Munroe, Anand Yethiraj, “The effect of confinement on the electrohydrodynamic behavior of droplets in a microfluidic oil-in-oil emulsion”, Soft Matter, 12, 9246-9255 (2016). DOI: 10.1039/C6SM01648K [pdf]
  26. Suliman Barhoum, Swomitra Palit, Anand Yethiraj, “Diffusion NMR studies of macromolecular complex formation, crowding and confinement in soft materials”, Progress in Nuclear Magnetic Resonance Spectroscopy, 94-95, 1-10 (2016). DOI:10.1016/j.pnmrs.2016.01.004 [pdf]
  27. Atul Varshney, Smita Gohil, Mayur Sathe, Sheshagiri Rao, J. B. Joshi, S. Bhattacharya, Anand Yethiraj, Shankar Ghosh, “Multiscale flow in a microscale oil-in-oil emulsion”, Soft Matter, 12, 1759-1764 (2016). DOI: 10.1039/C5SM02316E [pdf]
  28. Payam Bagheri, Ahmad Almudallal, Anand Yethiraj, Kristin Poduska “Quantitative metrics for assessing positional and orientational order in colloidal crystals”, Langmuir 31, 8251 (2015). [pdf]
  29. Hugh D. Newman and Anand Yethiraj, “Clusters in sedimentation equilibrium for an experimental hard-sphere-plus-dipolar Brownian colloidal system ” Scientific Reports 5, 13572 (2015). DOI:10.1038/srep13572. [pdf]
  30. Priti Mohanty, Payam Bagheri, Sofi Nöjd, Anand Yethiraj, Peter Schurtenberger ” Multiple path-dependent routes for phase transition kinetics in thermo-responsive and field-responsive ultra-soft colloids ” Phys. Rev. X, 5, 011030 (2015). DOI: 10.1103/PhysRevX.5.011030. [pdf]
  31. E. Elliott Burnell, Ronald Y. Dong, Adrian C. J.Weber, Anand Yethiraj, ” NMR of solutes in nematic and smectic A liquid crystals: the anisotropic intermolecular potential ” Mag. Reson. Chem. , 52, 570-580 (2014). [pdf]
  32. Atul Varshney, Smita Gohil, Somayeh Khajehpour Tadavani, Anand Yethiraj, S. Bhattacharya, Shankar Ghosh, “Large scale arrays of tunable microlenses”, Lab on a Chip, 14, 1330-1335 (2014), DOI: 10.1039/C3LC51170G. [pdf]
  33. S. Nöjd, P. S. Mohanty, P. Bagheri, A. Yethiraj, P. Schurtenberger, “Electric field driven self-assembly of ionic microgels”, Soft Matter 9, 9199-9207 (2013). DOI: 10.1039/C3SM51226F. [pdf]
  34. M. Seymour, I. Wilding, B. Xu, Jason I. Mercer, M. L. Plumer, K. M. Poduska, A. Yethiraj, J. van Lierop, “Micromagnetic modeling of experimental hysteresis loops for heterogeneous electrodeposited cobalt films”, Appl. Phys. Lett. 102 , 072403 (2013), DOI: 10.1063/1.4793209. [pdf]
  35. M. Pichumani, P. Bagheri, W. González-Viñas, K.M. Poduska, A. Yethiraj, “Dynamics, crystallization & structures in colloid spincoating”, Soft Matter 9, 3220-3229 (2013), arXiv:1210.6662, review article. [pdf]
  36. J. Dobnikar, A. Snezhko, A. Yethiraj, “Emergent colloidal dynamics in electromagnetic fields,” Soft Matter, 9, 3693-3704 (2013), DOI: 10.1039/c3sm27363fi, invited review article [pdf]
  37. S. Barhoum, V. Booth, A. Yethiraj, “Diffusion NMR of complex formation in membrane-associated peptides.” Eur. Biophys. J. (2013), advance article; arXiv:1210.6643, DOI: 10.1007/s00249-013-0890-4. [pdf]
  38. A. Varshney, S. Ghosh, S. Bhattacharya, A. Yethiraj, “Self organization of exotic oil-in-oil phases driven by tunable electrohydrodynamics” Scientific Reports 2, 738, doi:10.1038/srep00738 (2012); See also supplementary information (including movies). [pdf]
  39. J. S. Kim, Z. Wu, A. R. Morrow, Anand Yethiraj, Arun Yethiraj, “Self-diffusion and viscosity in electrolyte solutions” J. Phys. Chem. B 116, 12007 (2012); doi:10.1021/jp306847t. [pdf]
  40. P. S. Mohanty, A. Yethiraj, P. Schurtenberger, “Deformable particles with anisotropic interactions: unusual field-induced structural transitions in ultrasoft ionic microgel colloids”, Soft Matter 8, 10819 (2012), article, [pdf], [back cover highlight]
  41. S. Barhoum, R. Castillo, A. Yethiraj, “Characterization of Dynamics and Internal Structure of a Mixed-Surfactant Wormlike Micellar System Using NMR and Rheometry”, Soft Matter 8, 6950-6957 (2012) [pdf].
  42. M. J. McDonald, A. Yethiraj, L.Y. Beaulieu, “A method to characterize structure and symmetry in low-resolution images of colloidal thin films”, Meas. Sci. Technol. 23, 045606 (2012). [pdf]
  43. A. P. Bartlett, M. Pichumani, M. Giuliani, W. González-Viñas, A. Yethiraj, “A modified spincoating technique to achieve directional colloidal crystallization”, Langmuir (Letter) 28 , 3067 (2012). [pdf].
  44. A. Flynn, M. Ducey, A. Yethiraj, M. R. Morrow, ” Dynamic Properties of Bicellar Lipid Mixtures Observed by Rheometry and Quadrupole Echo Decay “, Langmuir 28, 2782 – 2790 (2012) DOI: 10.1021/la204111z. [pdf]
  45. A. P. Bartlett, A. K. Agarwal, A. Yethiraj, “Dynamic Templating of Colloidal Patterns in Three Dimensions with Nonuniform Electric Fields”, Langmuir (Letter) 27, 4313 (2011) [pdf], la200179 . Supplementary Information manuscript and movies 1, 2 and 3.
  46. E.E. Burnell, R.Y. Dong, A.C.J. Weber, X. Yang, A. Yethiraj, “Separation of nematic and smectic-A potential effects on solute ordering in a series of binary 6OCB/8OCB mixtures”, Can. J. Chem. 89, 900-908 (2011) Special Issue dedicated to Professor Roderick E. Wasylishen . [pdf].
  47. S. Barhoum, A. Yethiraj, “NMR Detection of an Equilibrium Phase Consisting of Monomers and Clusters in Concentrated Lysozyme Solutions “, J. Phys. Chem. B 114, 17062-17067 (2010) [pdf].
  48. M. Giuliani, W. González-Viñas, K.M. Poduska, A. Yethiraj, “Dynamics of Crystal Structure Formation in Spin-Coated Colloidal Films “, J. Phys. Chem. Lett. 1, 1481 (2010). [pdf].
  49. S. Barhoum, A. Yethiraj, “An NMR Study of Macromolecular Aggregation in a Model Polymer-Surfactant Solution”, J. Chem. Phys. 132, 024909 (2010). [pdf].
  50. N. Li, H. Newman, M. Valera, I. Saika-Voivod, A. Yethiraj, “Colloids with a Tunable Dipolar Interaction: Equations of State and Order Parameters via Confocal Microscopy”, Soft Matter 6 , 876 (2010). [pdf].
  51. A.K. Agarwal, A. Yethiraj, “Low-Density Ordered Phase in Brownian Dipolar Colloidal Suspensions”, Phys. Rev. Lett. 102, 198301 (2009). [pdf]
  52. C. Arcos, K. Kumar, W. González-Viñas, R. Sirera, K.M. Poduska, A. Yethiraj, “Orientationally correlated colloidal polycrystals without long-range positional order”, Phys. Rev. E 77, 050402(R) (2008). [pdf]
  53. S. Palit, A. Yethiraj, ” A New Model System for Diffusion NMR Studies of Concentrated Mono-disperse and Bi-disperse Colloids “, Langmuir 24, 3747 (2008). [pdf].
  54. A. Yethiraj, ” Tunable colloids: control of colloidal phase transitions with tunable interactions “, Soft Matter 3, 1099 (2007). [pdf].
  55. A. Yethiraj, R.Y. Dong, E.E. Burnell. ” The smectic potential in a liquid crystal with a reentrant nematic phase: NMR of solutes “, Chem. Phys. Lett. 441, 245 (2007). [pdf].
  56. D. Capitani, A. Yethiraj, E.E. Burnell. ” Memory Effects Across Surfactant Mesophases “, Langmuir 23, 3036 (2007). [pdf] .
  57. A. Yethiraj, A.C.J. Weber, R.Y. Dong, E.E. Burnell. ” NMR Determination of Smectic Ordering of Probe Molecules “, J. Phys. Chem. B 111, 1632 (2007). [pdf].
  58. A.S. Taggar, C.J. Campbell, A. Yethiraj, E.E. Burnell, “Testing assumptions about solute concentration dependence in liquid crystal NMR “, J. Phys. Chem. B 110, 1363 (2006). [pdf].
  59. A. Yethiraj, D. Capitani, N. E. Burlinson, E. E. Burnell, “An NMR study of Translational Diffusion and Structural Anisotropy in Magnetically Alignable Nonionic Surfactant Mesophases”, Langmuir, 21, 3311 (2005). [pdf].
  60. A. Yethiraj, Z. Sun, R. Y. Dong, E. E. Burnell, “NMR measurement of smectic ordering and nematic-smectic-A coupling in a liquid crystal”, Chem. Phys. Lett. 398, 517 (2004) [pdf].
  61. A. Yethiraj, J. Thijssen, A. Wouterse and A. van Blaaderen, “Large Electric-Field-Induced Colloidal Single Crystals for Photonic Applications”, Adv. Mater. 16, 596 (2004). [pdf].
  62. A. Yethiraj, A. Wouterse, B. Groh and A. van Blaaderen, “The nature of an electric-field-induced colloidal martensitic transition”, Phys. Rev. Lett., 92, 058301 (2004). [pdf].
  63. A. Yethiraj and A. van Blaaderen, “A colloidal model system with an interaction tunable from hard sphere to soft and dipolar”, Nature 421, 513 (2003). [pdf].
  64. A. van Blaaderen, J. P. Hoogenboom, D. L. J. Vossen, A. Yethiraj, A. van der Horst, K. Visscher, M. Dogterom, “Colloidal epitaxy: playing with the boundary conditions of colloidal crystallization”, Faraday Discussions 123, 107 (2003). [pdf].
  65. J. P. Hoogenboom, A. Yethiraj, A. K. van Langen, J. Romijn and A. van Blaaderen, “Epitaxial crystal growth of charged colloids”, Phys. Rev. Lett. 89, 256104 (2002). [pdf].
  66. A. Yethiraj and A. Van Blaaderen, “Colloidal suspensions as model electrorheological fluids: a real-space analysis of structure formation”, ERMR 2001 Conference Proceedings (refereed), Int. J. Mod. Phys. 16, 2328 (2002). [pdf].
  67. A. Yethiraj, R. Mukhopadhyay and J. Bechhoefer, “Two experimental tests of a fluctuation-induced first-order phase transition: Intensity Fluctuation Microscopy at the nematic-smectic-A transition”, Phys. Rev. E 65, 021702 (2002). [pdf].
  68. A. van Blaaderen, K. Velikov, J. Hoogenboom, D. Vossen, A. Yethiraj, R. Dullens, T. van Dillen, A. Polman, “Manipulating colloidal crystallization for photonic applications: from self-organization to do-it-yourself organization”, in NATO ASI: Photonic Crystals and Light Localization, C. M. Soukoulis, ed. (2001). [pdf].
  69. A. Yethiraj and J. Bechhoefer, “High-resolution study of fluctuation effects at the nematic-smectic-A phase transition”, Liq. Cryst. Today 10, 1 (2001), invited article. [pdf].
  70. I. Herbut, A. Yethiraj and J. Bechhoefer, “Effect of order-parameter fluctuations on the Halperin-Lubensky-Ma first-order transition in superconductors and liquid crystals”, Europhys. Lett. 55, 317 (2001). [pdf].
  71. A. Yethiraj and J. Bechhoefer, “Two experimental tests of the Halperin-Lubensky-Ma effect at the nematic-smectic-A phase transition”, Phys. Rev. Lett. 84, 3642 (2000). [pdf].
  72. R. Mukhopadhyay, A. Yethiraj and J. Bechhoefer, ” External-field-induced tricritical point in a fluctuation-driven nematic-smectic-A transition”, Phys. Rev. Lett. 83, 4796, (1999). [pdf].
  73. A. Yethiraj and J. Bechhoefer, “Using nematic director fluctuations as a sensitive probe of the nematic-smectic-A phase transition in liquid crystals”, conference proceedings, 16th International Liquid Crystal Conference, Mol. Cryst. Liq. Cryst. 304, 301 (1997). [pdf].
  74. A. Sonin, A. Yethiraj, J. Bechhoefer, B. J. Frisken, “Temperature-induced orientational phase transitions in freely-suspended nematic films”, Phys. Rev. E. 52 6 (1995). [pdf].

  1. S. Barhoum, A. K. Agarwal, A. Yethiraj, “Cluster phases in colloids and proteins”, New Challenges in Electrostatics of Soft and Disordered Matter, ed. D. Dean, J. Dobnikar, A. Naji, R. Podgornik, Pan Stanford 2013.
  2. A. Yethiraj, “Recent Experimental Developments at the Nematic to Smectic-A Liquid Crystal Phase Transition”, Thermotropic Liquid Crystals: Recent Advances, ed. A. Ramamoorthy, Springer 2007, chapter 8. [pdf], see the book’s Table of Contents.

  1. “From Stretchable Electronics to Active Plasmonics “, Section on Shifting Structures in Research Notes, Nature Materials 3, 202 (2002). [pdf].
  2. W. B. Russel, “Tunable Colloidal Crystals” (News and Views), Nature 421, 490 (2003). [pdf].
  3. T. Palberg, “Exotische Kristallphasen”, Physik Journal (The Journal of the German Physical Society) 2, 18 (2003). [pdf].
  4. S. Maier, “Forscher züchten Designer-Kristalle in elektrischen Feldern”, bild der Wissenschaft, http://www.wissenschaft.de/sixcms/detail.php?id=203313, 04.02.2003. [pdf].
  5. M. van Calmthout,”Turen naar een slap kristal”, de Volkskrant, 01.02.2003.

Lab Guidelines

  • Rheometer Guidelines [pdf] [docx]
  • Fast confocal microscope guidelines [pdf]
  • Malvern Zetasizer Nano ZS Manual [pdf]
  • Fluorescence correlation spectroscopy [pdf]

  • Water viscosity (mPa.s) as a function of temperature [txt]