The information published in this Graduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2018-2019 academic year, including the Summer Semester 2018, Fall Semester 2018 and the Winter Semester 2019.

For your convenience the Graduate Calendar is available in PDF format.

If you wish to link to the Graduate Calendar please refer to the Linking Guidelines.

The University is a full member of:

• Universities of Canada

Contact Information:

University of Guelph
Guelph, Ontario, Canada
N1G 2W1
519-824-4120

Revision Information:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1, 2018</td>
<td>Initial Publication</td>
</tr>
<tr>
<td>August 10, 2018</td>
<td>Revision 1</td>
</tr>
<tr>
<td>December 13, 2018</td>
<td>Revision 2</td>
</tr>
<tr>
<td>February 15, 2019</td>
<td>Revision 3</td>
</tr>
<tr>
<td>March 1, 2019</td>
<td>Revision 4</td>
</tr>
</tbody>
</table>
Disclaimer

The Office of Graduate Studies has attempted to ensure the accuracy of this on-line Graduate Calendar. However, the publication of information in this document does not bind the university to the provision of courses, programs, schedules of studies, fees, or facilities as listed herein.

Limitations

The University of Guelph reserves the right to change without notice any information contained in this calendar, including any rule or regulation pertaining to the standards for admission to, the requirements for the continuation of study in, and the requirements for the granting of degrees or diplomas in any or all of its programs.

The university will not be liable for any interruption in, or cancellation of, any academic activities as set forth in this calendar and related information where such interruption is caused by fire, strike, lock-out, inability to procure materials or trades, restrictive laws or governmental regulations, actions taken by the faculty, staff or students of the university or by others, civil unrest or disobedience, Public Health Emergencies, or any other cause of any kind beyond the reasonable control of the university.

The University of Guelph reaffirms section 1 of the Ontario Human Rights Code, 1981, which prohibits discrimination on the grounds of race, ancestry, place of origin, colour, ethnic origin, citizenship, creed, sex, sexual orientation, handicap, age, marital status or family status.

The university encourages applications from women, aboriginal peoples, visible minorities, persons with disabilities, and members of other under-represented groups.
Introduction

Collection, Use and Disclosure of Personal Information

Personal information is collected under the authority of the University of Guelph Act (1964), and in accordance with Ontario's Freedom of Information and Protection of Privacy Act (FIPPA) http://www.e-laws.gov.on.ca/DLB/Laws/Statutes/English/90f31_e.htm. This information is used by University officials in order to carry out their authorized academic and administrative responsibilities and also to establish a relationship for alumni and development purposes. Certain personal information is disclosed to external agencies, including the Ontario Universities Application Centre, the Ministry of Advanced Education and Skills Development, and Statistics Canada, for statistical and planning purposes, and is disclosed to other individuals or organizations in accordance with the Office of Registrarial Services Departmental Policy on the Release of Student Information. For details on the use and disclosure of this information call the Office of Registrarial Services at the University at (519) 824-4120 or see https://www.uoguelph.ca/registrar/.

Statistics Canada - Notification of Disclosure

For further information, please see Statistics Canada's web site at http://www.statcan.gc.ca and Section XIV Statistics Canada.

Address for University Communication

Depending on the nature and timing of the communication, the University may use one of these addresses to communicate with students. Students are, therefore, responsible for checking all of the following on a regular basis:

Email Address

The University issued email address is considered an official means of communication with the student and will be used for correspondence from the University. Students are responsible for monitoring their University-issued email account regularly.

Home Address

Students are responsible for maintaining a current mailing address with the University. Address changes can be made, in writing, through Registrarial Services.

Name Changes

The University of Guelph is committed to the integrity of its student records, therefore, each student is required to provide either on application for admission or on personal data forms required for registration, his/her complete, legal name. Any requests to change a name, by means of alteration, deletion, substitution or addition, must be accompanied by appropriate supporting documentation.

Student Confidentiality and Release of Student Information Policy Excerpt

The University undertakes to protect the privacy of each student and the confidentiality of his or her record. To this end the University shall refuse to disclose personal information to any person other than the individual to whom the information relates where disclosure would constitute an unjustified invasion of the personal privacy of that person or of any other individual. All members of the University community must respect the confidential nature of the student information which they acquire in the course of their work.

Complete policy at https://www.uoguelph.ca/secretariat/office-services/university-secretariat/university-policies.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>56</td>
</tr>
<tr>
<td>Administrative Staff</td>
<td>56</td>
</tr>
<tr>
<td>Graduate Faculty</td>
<td>56</td>
</tr>
<tr>
<td>Graduate Faculty from University of Waterloo</td>
<td>56</td>
</tr>
<tr>
<td>MSc Program</td>
<td>57</td>
</tr>
<tr>
<td>PhD Program</td>
<td>57</td>
</tr>
<tr>
<td>Collaborative Specializations</td>
<td>57</td>
</tr>
<tr>
<td>Courses</td>
<td>57</td>
</tr>
</tbody>
</table>
The Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry combines the Department of Chemistry at the University of Waterloo and the Department of Chemistry at the University of Guelph into a comprehensive and all-inclusive school of graduate chemistry and biochemistry. The members of the centre conduct research in virtually all areas of modern chemistry and biochemistry.

Professional personnel in the centre comprise those faculty members of the two departments who have been appointed as PhD advisors and have a record of recent research achievement. The centre is administered by the director and its affairs are guided by the co-ordinating committee, which consists of the director, the two departmental chairs, the two departmental Graduate Program Coordinators, two elected centre members from each campus, and one elected representative of the graduate student body from each campus.

The regulations applying to graduate study in the centre meet the requirements of the Graduate Councils and the Senates of the two universities.

The fields of research in which theses can be written normally fall within the categories of:

- Analytical chemistry
- Inorganic chemistry
- Nanoscience
- Organic chemistry
- Theoretical chemistry
- Polymer chemistry
- Biological chemistry or Biochemistry
- Physical Chemistry

The category chosen will normally be referred to as the candidate's major. However, if a suitable topic is chosen, a candidate may pursue research which involves more than one of the categories listed above. Certain course requirements must be fulfilled both for the MSc and for the PhD. These courses are chosen in consultation with the candidate's advisory committee and the graduate officers of the centre.

Administrative Staff

Director of the Centre
Elizabeth Meyering (ESC 228, University of Waterloo, (519) 888-4567, Ext. 32254) gwc@uoguelph.ca

Administrative Assistant for the Centre
Kim Rawson (263 Chemistry 2 Bldg., Univ. of Waterloo, (519) 888-4567 or (519) 824-4120, Ext. 38111/53484) gwc@uoguelph.ca

Chair of the Department at Guelph
Paul Rowntree (2515 Science Complex, Ext. 53061) rowntree@uoguelph.ca

Departmental Graduate Program Coordinator
Marcel Schlaf (339 MacNaughton, Ext. 53002) mmschlaf@uoguelph.ca

Departmental Graduate Secretary
Lisa O'Dwyer (2513 Science Complex, Ext. 53044) chemgrad@uoguelph.ca

Graduate Faculty

France-Isabelle Auzanneau
Maitrise, DEA, PhD Paris XI-Orsay - Professor

Aicheng Chen
Diploma, Shaoyang University, MSc, Xiamen University, PhD Guelph - Professor, Director of the Electrochemical Technology Centre

Michael K. Denk
Diplom- Chemiker, PhD Ludwig-Maximilians Universität Munich - Associate Professor

Wojciech Gabryelski
BSc, MSc Technical University of Gdansk (Poland), PhD Alberta - Associate Professor

Abdelaziz Houmam
Maitrise Casablanca I, DEA, PhD Paris 7 - Associate Professor

Lori Jones
BSc New Brunswick, PhD Guelph - Associate Professor

Richard A. Manderville
BSc, PhD Queen's - Professor

Mario A. Monteiro
BSc, PhD York University - Professor

Kathryn E. Preuss
BSc, MSc Waterloo - Professor and Tier II Canada Research Chair

Paul A. Rowntree
BSc, MSc Waterloo, PhD, MA Princeton - Professor and Chair

Marcel Schlaf
Diplom-Chemiker Bayerische Julius-Maximilian Universität, PhD Toronto - Professor and Program Coordinator

Adrian L. Schwab
BSc Western Ontario, PhD McMaster - Professor

Dmitry V. Soldatov
MSc Novosibirsk State, PhD Russian Academy of Sciences - Associate Professor

W.W.L. Tam
BSc Hong Kong, PhD Toronto - Professor

Daniel F. Thomas
BSc Alberta, PhD Toronto - Associate Professor

Peter Tremaine
BSc Waterloo, PhD Alberta - Professor and NSERC Industrial Research Chair

Graduate Faculty from University of Waterloo

Monica Barra
BSc, PhD National Univ. of Cordoba (Argentina) - Associate Professor

Jonathan Baugh
BSc Tennessee (Chattanooga), PhD North Carolina (Chapel Hill) - Assistant Professor

J. Michael Chong
BSc, PhD British Columbia - Professor

David Cory
BA, PhD (Case Western Reserve) - Professor and Canada Excellence Research Chair

Thorsten Dieckmann
Dipl., Dr. rer. nat, Braunschweig - Associate Professor

Gary I. Dmitrienko
BSc, PhD Toronto - Associate Professor

Jean Duhamel
BEng, MSc, PhD (ENSIC, Nancy, France) - Professor and Canada Research Chair

Eric Fillion
BSc, Sherbrooke, MSc, Montreal, PhD Toronto - Professor

Mario Gauthier
BSc, PhD McGill - Professor

Tadeusz Gorecki
MSc, PhD (Technical University of Gdansk) - Professor

J. Guy Guillemette
BSc, PhD Toronto - Associate Professor and Graduate Officer

John F. Honek
BSc, PhD McGill - Professor and Chair

Scott Hopkins
BSc, PhD New Brunswick - Assistant Professor

Vassili Karanassios
BSc Thessaloniki, PhD Alberta - Professor

Holger Kleinke
BSc, MSc Westfalische-Universitat Munster, PhD Johannes-Gutenberg Universitat Mainz - Professor and Canada Research Chair

Anna Klinkova
B.Sc., Saint Petersburg State University, Russia, M.Sc., Bowling Green State University, Ph.D., Toronto - Assistant Professor

Sonny C. Lee
BS California Institute of Technology, PhD Harvard - Associate Professor

Bob Lemieux
BA(Hons), Colgate University (New York), PhD Illinois (Urbana) - Professor and Dean of Science

K. Tong Leung
BSc, PhD British Columbia - Professor

Jeff Lu
BS Science and Technology (China), PhD Illinois (Urbana-Champaign) - Assistant Professor

Vivek Maheshwari
BSc, MSc, PhD National Univ. of Cordoba (Argentina) - Associate Professor

Monica Barra
BSc, PhD National Univ. of Cordoba (Argentina) - Associate Professor

Joseph Leventhal
BSc, PhD Duke - Associate Professor

Judith Meier
BSc, PhD University of British Columbia - Associate Professor

Dmitriy V. Soldatov
BSc, PhD National Univ. of Cordoba (Argentina) - Associate Professor
Department of Chemistry

March 1, 2019

IX. Graduate Programs, Chemistry

Marcel Noolijen
BSc, PhD Vrije Universiteit van Amsterdam - Associate Professor

Michael Palmer
MD Giessen - Associate Professor

Janusz Pawliszyn
BSc, MSc Gdańsk (Poland), PhD Southern Illinois - Professor and University/NSERC Industrial Research Chair and Canada Research Chair

William P. Power
BSc, PhD Dalhousie - Associate Professor and Department Chair

Eric Prouzet
MSc, PhD Nantes - Associate Professor

Pavle Radovanovic
MS Georgetown, PhD Washington - Assistant Professor and Canada Research Chair

Derek Schipper
BSc University of P.E.I, PhD University of Ottawa - Assistant Professor

German Scaini
BSc, PhD University of Buenos Aires - Associate Professor

Rodney Smith
BSc Honours University of Manitoba, PhD Memorial University of Newfoundland - Assistant Professor

Xiao-Wu (Shirley) Tang
BS Huazhong University of Science and Technology, PhD Massachusetts Institute of Technology - Assistant Professor

Scott Taylor
BSc McGill, MSc, PhD Toronto - Professor

Adam Wei Tsen
BS University of California, Berkeley, PhD Cornell University, New York - Assistant Professor

Xiaosong Wang
BSc, MSc Zhejiang University, PhD East China University of Science & Technology - Associate Professor

MSc Program

The fields of research in which theses can be written normally fall within: 1) analytical; 2) inorganic; 3) nanoscience; 4) organic; 5) theoretical (also chemical physics); 6) polymer chemistry; 7) biological chemistry or biochemical; and 8) Physical Chemistry.

An applicant is encouraged to apply for admission if he/she has an honours bachelor of science degree, or the equivalent, with a minimum standing of 75% in the last two years from an accredited university. The co-op MSc option is not available to students who have completed a co-op program as undergraduates. These students are, however, eligible for admission to the co-op PhD program.

Applicants whose first language is not English are required to submit evidence of proficiency in the English language or pass the Test of English as a Foreign Language (TOEFL).

Degree Requirements

Students enroll in one of three study options: 1) thesis, 2) co-op, or 3) course work and major research project.

Thesis

Students must successfully complete at least four semester-long graduate courses, one of which is the MSc Seminar, CHEM*7940, and submit and defend an acceptable thesis.

Co-op

The academic requirements are the same as in the regular MSc program, but at least two of the required four semester-long courses (including CHEM*7940) must be completed during the first two semesters of study. COOP*1100 - Introduction to Co-operative Education, a mandatory, non-credit course, is a prerequisite for the first work term and prepares the student for the employment process. This course must be completed the semester prior to the competitive co-op job search semester.

After successful completion of the academic semesters of course work, the co-operative education requirements are to successfully complete three consecutive 4-month co-op work terms in an approved laboratory. The student’s performance in the workplace is supervised and evaluated by the student’s employer using the Work Performance Evaluation tool. The student’s progress during the work term is also monitored by Co-operative Education & Career Services, including an official site visit during the co-op work term and a review of the student’s official Learning Goals. A Co-op Work Term Report is required for each work term and is graded by an assigned Co-op Faculty Advisor. All evaluation grades will appear on the student’s official transcript.

An altered co-op fee payment schedule will be proposed during the admission offer stage. Following successful completion of the work year, the student will return to the centre to continue work on a PhD research project and complete the regular PhD requirements.

Collaborative Specializations

Toxicology

The Department of Chemistry participates in the MSc/PhD collaborative specialization in toxicology. Please consult the Toxicology listing for a detailed description of the MSc/PhD collaborative specialization. Students choosing this option must meet the requirements of the toxicology collaborative specialization, as well as those of (GWC)2 for their particular degree program. Three toxicology courses must be completed including Advanced Topics in Toxicology, TOX*6200, and a research project must be conducted for their particular degree program. Three toxicology courses must be completed including Advanced Topics in Toxicology, TOX*6200, and a research project must be conducted with a participating faculty member at the University of Guelph.

Courses

Except where specified, courses in the following list may be offered in any semester subject to student demand and the availability of an instructor.

All courses are given an eight character code with the sixth having the following significance: 1) inorganic; 2) analytical; 3) biochemistry; 4) theoretical; 5) physical; 6) organic; 7) polymer; 8) general.

Inorganic

CHEM*7100 Selected Topics in Inorganic Chemistry U [0.50]

Discussion of specialized topics related to the research interests of members of the centre. Special topics could include, for example: bioinorganic chemistry; inorganic reaction mechanisms; synthetic methods in inorganic and organometallic chemistry; homogeneous and heterogeneous catalysis; chemistry of polynuclear compounds.

Department(s): Department of Chemistry
Analytical

CHEM*7200 Selected Topics in Analytical Chemistry U [0.50]

Special topics could include, for example: trace analysis using modern instrumental and spectroscopic methods; advanced mass spectrometry (instrumentation and interpretation of spectra); analytical aspects of gas and liquid chromatography.

Department(s): Department of Chemistry

CHEM*7240 Chemical Instrumentation U [0.50]

Instrumental components and optimum application; rudiments of design; electrical, spectral, migrational and other methods.

Department(s): Department of Chemistry

CHEM*7260 Topics in Analytical Spectroscopy U [0.50]

Atomic emission and absorption spectroscopy; methods of excitation and detection; quantitative applications. Molecular electronic spectroscopy, UV, visible and Raman, instrumental characteristics; applications to quantitative determinations, speciation, measurements of equilibrium, etc. Sources and control of errors and interferences. Determination and description of colour.

Department(s): Department of Chemistry

CHEM*7270 Separations U [0.50]

Material to be covered is drawn from the following topics: diffusion; isolation of organic material from the matrix; chromatographic techniques - principles of chromatographic separation, gas (GLC, GSC), liquid (HPLC, GC, IEC), supercritical fluid (SFC) chromatographies; GC-MS, GC-FTR; electrophoresis, flow field fractionation. Prerequisites: undergraduate level course in instrumental analysis.

Department(s): Department of Chemistry

CHEM*7280 Electroanalytical Chemistry U [0.50]

A study of electroanalytical techniques and their role in modern analytical chemistry. The underlying principles are developed. Techniques include chromatoparometry, chronocoulometry, polarography, voltammetry, chronopotentiometry, coulometric titrations, flow techniques, electrochemical sensors and chemically modified electrodes.

Department(s): Department of Chemistry

CHEM*7290 Surface Analysis U [0.50]

Department(s): Department of Chemistry

Biochemistry

CHEM*7300 Proteins and Nucleic Acids U [0.50]

Determination of protein sequence and 3-dimensional structure, protein anatomy; prediction of protein structure; intermolecular interactions and protein-protein association; effects of mutation. Nucleic acid structure and anatomy; DNA and chromatin structure; RNA structure; snRNPs and ribozymes; protein-nucleic acid interactions.

Department(s): Department of Chemistry

CHEM*7310 Selected Topics in Biochemistry U [0.50]

Discussion of specialized topics related to the research interests of members of the centre; for example, recent offerings have included peptide and protein chemistry, biochemical toxicology, medical aspects of biochemistry, glycolipids and glycoproteins, redox enzymes, biological applications of magnetic resonance, etc.

Department(s): Department of Chemistry

CHEM*7360 Regulation in Biological Systems U [0.50]

Department(s): Department of Chemistry

CHEM*7370 Enzymes U [0.50]

Department(s): Department of Chemistry

CHEM*7380 Cell Membranes and Cell Surfaces U [0.50]

Membrane proteins and lipids - structure and function; dynamics; techniques for their study; model membrane systems. Membrane transport. The cytoskeleton. Membrane protein biogenesis, sorting and targeting. Signal transduction across membranes. The cell surface in immune responses.

Department(s): Department of Chemistry

Physical/Theoretical

CHEM*7400 Selected Topics in Theoretical Chemistry U [0.50]

Discussion of specialized topics related to the research interests of the members of the centre. Special topics could include for example: theory of intermolecular forces; density matrices; configuration interaction; correlation energies of open and closed shell systems; kinetic theory and gas transport properties; theory of the chemical bond.

Department(s): Department of Chemistry

CHEM*7450 Statistical Mechanics U [0.50]

Review of classical and quantum mechanics; principles of statistical mechanics; applications to systems of interacting molecules; imperfect gases, liquids, solids, surfaces and solutions.

Department(s): Department of Chemistry

CHEM*7460 Quantum Chemistry U [0.50]

Approximate solutions of the Schrodinger equation and calculations of atomic and molecular properties.

Department(s): Department of Chemistry

CHEM*7500 Selected Topics in Physical Chemistry U [0.50]

Discussion of specialized topics related to the research interests of the members of the centre. Special topics could include for example: principles of magnetic resonance in biological systems; collisions, spectroscopy and intermolecular forces, surface chemistry; catalysis; electrolyte theory; non-electrolyte solution theory; thermodynamics of biological systems; thermodynamics.

Department(s): Department of Chemistry

CHEM*7550 Kinetics - Dynamics U [0.50]

Department(s): Department of Chemistry

CHEM*7560 Spectroscopy U [0.50]

Aspects of electronic vibrational and rotational spectroscopy of atoms, molecules, and the solid state. Relevant aspects of quantum mechanics, Dirac notation, and angular momentum will be discussed. Group Theory will be presented and its implications for spectroscopy introduced. Prerequisites: one semester-long undergraduate course in quantum mechanics or the approval of the instructor.

Department(s): Department of Chemistry
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Department(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*7600</td>
<td>Selected Topics in Organic Chemistry</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>Two or three topics from a range including: bio-organic chemistry;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>environmental organic chemistry; free radicals; heterocyclic molecules;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>molecular rearrangements; organometallic chemistry; photochemistry;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>natural products.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM*7640</td>
<td>Synthetic Organic Reactions</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>Named organic reactions and synthetically useful reactions are discussed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The mechanism, stereochemical implications and use in organic synthesis of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>these reactions will be presented. Examples from the organic literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>will be used to illustrate these aspects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM*7650</td>
<td>Strategies in Organic Synthesis</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>The synthesis of organic compounds is discussed and emphasis is placed on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the design of synthetic routes. Examples drawn from the literature are used</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to illustrate this synthetic planning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): CHEM*7640</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department(s): Department of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM*7660</td>
<td>Organic Spectroscopy</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>Ultraviolet, infrared, resonance spectroscopy and mass spectrometry, with</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>emphasis on applications to studies of organic molecules.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM*7690</td>
<td>Physical Organic Chemistry</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>Linear free energy relationships; substituent effects and reactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intermediates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLY*7700</td>
<td>Principles of Polymer Science</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>Introduction to the physical chemistry of high polymers, principles of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>polymer synthesis, mechanisms and kinetics of polymerization reactions,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>copolymerization theory, polymerization in homogeneous and heterogeneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>systems, chemical reactions of polymers. Theory and experimental methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for the molecular characterization of polymers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLY*7710</td>
<td>Physical Properties of Polymers</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>The physical properties of polymers are considered in depth from a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>molecular viewpoint. Rubber elasticity, mechanical properties, rheology and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solution behaviour are quantitatively treated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): POLY*7700 or equivalent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department(s): Department of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLY*7720</td>
<td>Polymerization and Polymer Reactions</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>The reactions leading to the production of polymers are considered with</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>emphasis on emulsion and suspension polymerization and polymerization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reaction engineering. Polymer degradation, stabilization and modification</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reactions are also considered in depth.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): POLY*7700 or equivalent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department(s): Department of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLY*7730</td>
<td>Selected Topics in Polymer Chemistry</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>Discussion of specialized topics of polymer chemistry related to the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>research interests of the faculty or prominent scientific visitors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special topics could include, for example: polymer stabilization and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>degradation; mechanical properties; polymer principles in surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>coatings; organic chemistry of synthetic high polymers; estimation of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>polymer properties; reactions of polymers; polymerization kinetics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department(s): Department of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESEARCH</td>
<td>MSc Seminar</td>
<td>0.50</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>A written literature review and research proposal on the research topic will</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be presented and defended in a 30-minute public seminar. This requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>is to be completed by all thesis-option MSc students within two semesters</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of entering the program.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department(s): Department of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESEARCH</td>
<td>MSc Thesis</td>
<td>0.00</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>Department(s): Department of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESEARCH</td>
<td>PhD Thesis</td>
<td>0.00</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>Department(s): Department of Chemistry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>