The information published in this Undergraduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2019-2020 academic year, including the Summer Semester 2019, the Fall Semester 2019 and the Winter Semester 2020.

For your convenience the Undergraduate Calendar is available in PDF format.

If you wish to link to the Undergraduate Calendar please refer to the Linking Guidelines.

The University is a full member of:

- Universities Canada

Contact Information:

University of Guelph
Guelph, Ontario, Canada
N1G 2W1
519-824-4120
https://www.uoguelph.ca

Revision Information:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 6, 2019</td>
<td>Initial Publication</td>
</tr>
<tr>
<td>April 8, 2019</td>
<td>Second Publication</td>
</tr>
</tbody>
</table>
Disclaimer

University of Guelph 2019

The information published in this Undergraduate Calendar outlines the rules, regulations, curricula, programs and fees for the 2019-2020 academic year, including the Summer Semester 2019, the Fall Semester 2019 and the Winter Semester 2020.

The University reserves the right to change without notice any information contained in this calendar, including fees, any rule or regulation pertaining to the standards for admission to, the requirements for the continuation of study in, and the requirements for the granting of degrees or diplomas in any or all of its programs. The publication of information in this calendar does not bind the University to the provision of courses, programs, schedules of studies, or facilities as listed herein.

The University will not be liable for any interruption in, or cancellation of, any academic activities as set forth in this calendar and related information where such interruption is caused by fire, strike, lock-out, inability to procure materials or trades, restrictive laws or governmental regulations, actions taken by faculty, staff or students of the University or by others, civil unrest or disobedience, public health emergencies, or any other cause of any kind beyond the reasonable control of the University.

In the event of a discrepancy between a print version (downloaded) and the Web version, the Web version will apply.

Published by: Enrolment Services
Introduction

Collection, Use and Disclosure of Personal Information

Personal information is collected under the authority of the University of Guelph Act (1964), and in accordance with Ontario's Freedom of Information and Protection of Privacy Act (FIPPA) [http://www.e-laws.gov.on.ca/index.html]. This information is used by University officials in order to carry out their authorized academic and administrative responsibilities and also to establish a relationship for alumni and development purposes. Certain personal information is disclosed to external agencies, including the Ontario Universities Application Centre, the Ministry of Training, Colleges and Universities, and Statistics Canada, for statistical and planning purposes, and is disclosed to other individuals or organizations in accordance with the Office of Registrarial Services Departmental Policy on the Release of Student Information. For details on the use and disclosure of this information call the Office of Registrarial Services at the University at (519) 824-4120 or see [http://www.uoguelph.ca/registrar/registrar/index.cfm?index].

Disclosure of Personal Information to the Ontario Ministry of Training, Colleges and Universities

The University of Guelph is required to disclose personal information such as characteristics and educational outcomes to the Ministry of Training, Colleges and Universities under s. 15 of the Ministry of Training, Colleges and Universities Act, R.S.O. 1990, Chapter M.19, as amended. The Ministry collects this data for purposes including but not limited to planning, allocating and administering public funding to colleges, universities and other post-secondary educational and training institutions.

Amendments made to the Ministry of Training, Colleges and Universities Act, authorizing the collection and use of personal information from colleges and universities by the Minister which were set out in Schedule 5 of the Childcare Modernization Act, 2014, came into force on March 31, 2015.

The amendments strengthen the ability of the Minister to directly or indirectly collect and use personal information about students as required to conduct research and analysis, including longitudinal studies, and statistical activities conducted by or on behalf of the Ministry for purposes that relate to post-secondary education and training, including,

i. understanding the transition of students from secondary school to post-secondary education and training,
ii. understanding student participation and progress, mobility and learning and employment outcomes,
iii. understanding linkages among universities, colleges, secondary schools and other educational and training institutions prescribed by regulation,
iv. understanding trends in post-secondary education or training program choices made by students,
v. understanding sources and patterns of student financial resources, including financial assistance and supports provided by government and post-secondary educational and training institutions,
vi. planning to enhance the affordability and accessibility of post-secondary education and training and the quality and effectiveness of the post-secondary sector,
vii. identifying conditions or barriers that inhibit student participation, progress, completion and transition to employment or future post-secondary educational or training opportunities, and
viii. developing key performance indicators.

Information that the University is required to provide includes but is not limited to: first, middle and last name, Ontario Educational Number, citizenship, date of birth, gender, first three digits of a student’s postal code, mother tongue, degree program and major(s) in which the student is enrolled, year of study and whether the student has transferred from another institution.

Further information on the collection and use of student-level enrolment-related data can be obtained from the Ministry of Training, Colleges and Universities website: https://www.ontario.ca/page/ministry-advanced-education-and-skills-development (English) or https://www.ontario.ca/fr/page/ministere-de-lenseignement-supieur-et-de-la-formation-professionnelle (French) or by writing to the Director, Postsecondary Finance and Information Management Branch, Postsecondary Education Division, 7th Floor, Mowat Block, 900 Bay Street, Toronto, ON M7A 1L2.

Authority to Disclose Personal Information to Statistics Canada

The Ministry of Training, Colleges and Universities discloses student-level enrolment-related data it collects from the colleges and universities as required by Statistics Canada in accordance with Section 13 of the Federal Statistics Act. This gives the Ministry authority to disclose personal information in accordance with s. 42(1) (e) of FIPPA.

Notification of Disclosure of Personal Information to Statistics Canada

For further information, please see the Statistics Canada’s web site at http://www.statcan.ca and Section XIV Statistics Canada.

Address for University Communication

Depending on the nature and timing of the communication, the University may use one of these addresses to communicate with students. Students are, therefore, responsible for checking all of the following on a regular basis:

Email Address

The University issued email address is considered an official means of communication with the student and will be used for correspondence from the University. Students are responsible for monitoring their University-issued email account regularly. See Section I--Statement of Students' Academic Responsibilities for more information.

Home Address

Students are responsible for maintaining a current mailing address with the University. Address changes can be made, in writing, through Enrolment Services.

Name Changes

The University of Guelph is committed to the integrity of its student records, therefore, each student is required to provide either on application for admission or on personal data forms required for registration, his/her complete, legal name. Any requests to change a name, by means of alteration, deletion, substitution or addition, must be accompanied by appropriate supporting documentation.

Student Confidentiality and Release of Student Information Policy Excerpt

The University undertakes to protect the privacy of each student and the confidentiality of his or her record. To this end the University shall refuse to disclose personal information to any person other than the individual to whom the information relates where disclosure would constitute an unjustified invasion of the personal privacy of that person or of any other individual. All members of the University community must respect the confidential nature of the student information which they acquire in the course of their work.

Learning Outcomes

On December 5, 2012, the University of Guelph Senate approved five University-wide Learning Outcomes as the basis from which to guide the development of undergraduate degree programs, specializations and courses:

1. Critical and Creative Thinking
2. Literacy
3. Global Understanding
4. Communicating
5. Professional and Ethical Behaviour

These learning outcomes are also intended to serve as a framework through which our educational expectations are clear to students and the broader public; and to inform the process of outcomes assessment through the quality assurance process (regular reviews) of programs and departments.

An on-line guide to the learning outcomes, links to the associated skills, and detailed rubrics designed to support the development and assessment of additional program and discipline-specific outcomes, are available for reference on the Learning Outcomes website.

1. Critical and Creative Thinking

Critical and creative thinking is a concept in which one applies logical principles, after much inquiry and analysis, to solve problems with a high degree of innovation, divergent thinking and risk taking. Those mastering this outcome show evidence of integrating knowledge and applying this knowledge across disciplinary boundaries. Depth and breadth of understanding of disciplines is essential to this outcome.

In addition, Critical and Creative Thinking includes, but is not limited to, the following outcomes: Inquiry and Analysis; Problem Solving; Creativity; and Depth and Breadth of Understanding.

2. Literacy

Literacy is the ability to extract information from a variety of resources, assess the quality and validity of the material, and use it to discover new knowledge. The comfort in using quantitative literacy also exists in this definition, as does using technology effectively and developing visual literacy.

In addition, Literacy includes, but is not limited to, the following outcomes: Information Literacy, Quantitative Literacy, Technological Literacy, and Visual Literacy.

3. Global Understanding:

Global understanding encompasses the knowledge of cultural similarities and differences, the context (historical, geographical, political and environmental) from which these arise, and how they are manifest in modern society. Global understanding is exercised as civic engagement, intercultural competence and the ability to understand an academic discipline outside of the domestic context.

In addition, Global Understanding includes, but is not limited to, the following outcomes: Global Understanding, Sense of Historical Development, Civic Knowledge and Engagement, and Intercultural Competence.

4. Communicating

Communicating is the ability to interact effectively with a variety of individuals and groups, and convey information successfully in a variety of formats including oral and written communication. Communicating also comprises attentiveness and listening, as well as reading comprehension. It includes the ability to communicate and synthesize information, arguments, and analyses accurately and reliably.

In addition, Communicating includes, but is not limited to, the following outcomes: Oral Communication, Written Communication, Reading Comprehension, and Integrative Communication.

5. Professional and Ethical Behaviour

Professional and ethical behaviour requires the ability to accomplish the tasks at hand with proficient skills in teamwork and leadership, while remembering ethical reasoning behind all decisions. The ability for organizational and time management skills is essential in bringing together all aspects of managing self and others. Academic integrity is central to mastery in this outcome.

In addition, Professional and Ethical Behaviour includes, but is not limited to, the following outcomes: Teamwork, Ethical Reasoning, Leadership, and Personal Organization and Time Management.
Table of Contents

- Bachelor of Engineering [B.Eng.] ... 467
- Program Information .. 467
- Undeclared First Year Entry - B.Eng. Program 467
- Biological Engineering Program (BIOE) ... 468
- Biological Engineering Program Co-op (BIOE:C) 468
- Biomedical Engineering Program (BME) .. 469
- Biomedical Engineering Program Co-op (BME:C) 469
- Computer Engineering Program (CENG) ... 470
- Computer Engineering Program Co-op (CENG:C) 470
- Engineering Systems and Computing Program (ESC) 471
- Engineering Systems and Computing Program Co-op (ESC:C) 472
- Environmental Engineering Program (ENVE) 472
- Environmental Engineering Program Co-op (ENVE:C) 473
- Food Engineering (FENG) ... 473
- Mechanical Engineering Program (MECH) 474
- Mechanical Engineering Program Co-op (MECH:C) 474
- Water Resources Engineering Program (WRE) 475
- Water Resources Engineering Program Co-op (WRE:C) 475
Bachelor of Engineering [B.Eng.]

Program Information

Objectives of the Program

Students in this program obtain a liberal engineering education, which includes a comprehensive core of science, mathematics and engineering science that provides a strong foundation for engineering design and analysis. This enables students to undertake the solution of engineering problems in the areas of biological, biomedical, computer, engineering, environmental, mechanical and water resources.

Core subjects, combined with elective opportunities, provide an understanding of the connection between engineering and science, coupled with the interdisciplinary skills needed to address the problems and challenges faced by engineers in society today.

The curriculum includes a strong emphasis on engineering design. Students engage in engineering design throughout the program, and gain experience in computer aided design and modeling, conceptual design and physical construction. Emphasis is on teamwork and communications skills, as well as working on interdisciplinary projects.

Career opportunities are open in many segments of the economy. Examples are: consulting services to municipalities, utilities and industry; resource agencies in advisory, regulatory, planning and utilization; service industries of construction, power and water supply and public health; manufacturing, design of computer and control systems, hardware and software development; mechatronics and emerging energy systems; medical devices, pharmaceutical and food industries and industrial ergonomics; academic research and graduate studies within and without the field of engineering.

Many engineers assume management responsibilities after gaining experience in design, development and operations. The balance provided by liberal arts and engineering education allows graduates to enjoy a great deal of career mobility.

Accreditation

The baccalaureate degree programs in all engineering programs are accredited by the Canadian Engineering Accreditation Board of Engineers Canada. Graduates from accredited engineering programs have the educational requirements to apply for membership in the Professional Engineers Ontario (PEO) and other provinces after a number of years of acceptable engineering experience and successful completion of a PEO examination in engineering law and ethics.

Requirements of the Program

Students combine their required courses in mathematics, physical sciences and engineering with additional credits providing the opportunity for specialization in: one of the programs; complementary studies courses; and elective subjects. A minimum of 23.50 credits must be obtained for the following programs: Biological Engineering, Engineering Systems and Computing, Environmental Engineering, Mechanical Engineering, and Water Resources Engineering. A minimum of 23.75 credits must be obtained for Biomedical Engineering. A minimum of 24.00 credits must be obtained for Computer Engineering. At least 3.00 credits must be complementary studies, which consist of courses in the social sciences, arts, management, engineering economics and communication. They complement the technical content of the curriculum. All credits are selected according to the schedule of studies for the student's chosen program. Restrictions apply to the number of non-core credits which may be at the 1000 level. Further information on approved courses may be obtained from the B.Eng. Program Guide available from the director or program counsellor of the School of Engineering.

Programs

Entry into a specific B.Eng. program is done two ways. Students can select their desired program of study (major) at the time of application. If accepted, students will be given an offer to their program of choice. Students also have the option of selecting the Undeclared First Year (Undeclared Stream) entry point due to the similarities of first year. Students in the Undeclared Stream then normally select their specific program of study during course selection for Semester II. Students in the Undeclared stream are strongly encouraged to meet with their Program Counsellor during Semester I. The School’s Associate Director - Undergraduate Affairs or designate approve program selection during the semester add periods. There are no enrollment caps on any program, so students are free to select their programs of choice. Students wanting to make a switch in majors after the above dates are free to do so with prior approval, but will be off sequence and may be required to take additional courses.

The available programs are:

- Undeclared First Year: Students selecting this entry point are required to select one of the B.Eng. Majors at the time of course selection in Semester II.
- Biological Engineering - the application of engineering to the control and management of biological processes, environments, and human factors in engineering design.
- Biomedical Engineering - the application of engineering to health and medicine.
- Computer Engineering - the application of engineering to the design, fabrication, and testing of computing machines and computer systems.
- Engineering Systems and Computing - the application of engineering to the design, operation and management of data sensing, transmission and processing systems, and of control systems.
- Environmental Engineering - the application of engineering to protect and restore the environment, through the prevention and treatment of gaseous, liquid and solid wastes.
- Mechanical Engineering - The application of engineering to the design, manufacturing and control of mechanical and electro-mechanical equipment, systems and devices.
- Water Resources Engineering - the application of engineering to the control and management of water and soil resources to meet human needs while sustaining the natural environment.

The schedule of studies for each program is provided below but guidance in the selection of appropriate courses is available from the program counsellor of the School of Engineering.

Additional Course Requirements

Students lacking specific subject requirements are advised to consult the Recommendations and Notes in Section IV--Admission Information-B.Eng.,

Continuation of Study

Students are advised to consult the regulations for continuation of study within the program which are outlined in detail in Section VIII, Undergraduate Degree Regulation & Procedures. Students will be ineligible to continue in the B.Eng. program and will not be readmitted to the degree program if the same course is failed three times.

Normally, students in the B.Eng. program will be permitted only one supplemental privilege during their studies. It will usually be granted for 3000 or 4000 level courses only.

Conditions for Graduation

To qualify for the degree the student must complete the courses required for a B.Eng. program, obtaining a minimum of 23.50 credits for one of: Biological Engineering, Environmental Engineering, Mechanical Engineering, Engineering Systems and Computing Engineering; or 23.75 credits for Biomedical Engineering; or 24.00 credits for Computer Engineering, and must achieve an overall minimum cumulative average of at least 60% and a minimum cumulative average of at least 60% in all ENGG courses.

Co-operative Education

Students studying for the B.Eng. degree may participate in a Co-operative Education program following the completion of the first 4 semesters of study. The Co-operative Education program consists of a minimum of 4 semesters of experience in industry with employers who participate in the program. Reports and assignments are graded by a faculty supervisor with assistance from the employer. Evaluations of Co-op semesters are recorded on the student's academic record. The Co-operative Education program provides an excellent opportunity for students to obtain work experience in industry directly related to their field of study. Interested students should consult their program counsellor.

Students wishing to participate in the Co-operative Education program should indicate their intention to do so by applying for admission to the Co-op program on entrance. Following the completion of semester 2, in-course applicants will be considered for admission to the Co-op program if space permits.

Successful applicants will:

1. have a minimum cumulative average of 70% in semesters 1 and 2
2. have successfully completed all of the credits required in the schedule of studies for semesters 1 and 2
3. be employable in Canada or be in possession of an appropriate work-permit for Co-op students
4. have obtained the approval of their Co-op advisor in the school to participate in the program.
5. complete the co-op program as outlined in the Co-operative Education program.

Please refer to Co-operative Education Program for Admission requirements into the Co-op Program.

B. Eng. Co-op Work Term Schedule

<table>
<thead>
<tr>
<th>Semester</th>
<th>Yr. 1</th>
<th>Yr. 2</th>
<th>Yr. 3</th>
<th>Yr. 4</th>
<th>Yr. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>work</td>
</tr>
<tr>
<td>Winter</td>
<td>2</td>
<td>4</td>
<td>work</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Summer</td>
<td>work</td>
<td>work</td>
<td>work</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All candidates must complete a minimum of 5 of the preceding 6 work terms with at least one work-term in each of a Fall, Winter and Summer semester. Students are eligible to participate in a maximum of two (2) work terms commencing in the summer and must follow the academic work schedule as outlined in the Co-operative Education & Career Services website.

Undeclared First Year Entry - B.Eng. Program

College of Engineering and Physical Sciences, School of Engineering

Semester 1 - Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1040</td>
<td>0.50</td>
<td>Chemistry</td>
</tr>
<tr>
<td>ENGG*1100</td>
<td>0.75</td>
<td>Engineering</td>
</tr>
<tr>
<td>MATH*1200</td>
<td>0.50</td>
<td>Mathematics</td>
</tr>
</tbody>
</table>

Last Revision: February 6, 2019

2019-2020 Undergraduate Calendar
Biological Engineering Program (BIOE)

College of Engineering and Physical Sciences, School of Engineering

Students interested in problems requiring the application of knowledge from both the biological sciences and engineering will find a challenge as a Biological Engineer. This field of engineering is the application of principles, methods and concepts of biology to systems and tools, ranging in scale from molecular to ecosystem level. This field combines engineering principles with life sciences to design creative solutions for biological systems, with applications ranging from pharmaceutical and food manufacturing, bioconversions to reduce waste, and production of sustainable, bio-based materials. For example, a Biological Engineer concentrating on biotechnology might design and manage bioreactors to improve their productivity. A Biological Engineering graduate can pursue a career in a number of exciting fields, including food safety, bio-instrumentation, diagnostics and sensors in bio-systems, biomechanics and ergonomics.

Major (Honours Program)

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1040</td>
<td>0.50</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>ENGG*1100</td>
<td>0.75</td>
<td>Engineering and Design I</td>
</tr>
<tr>
<td>ENGG*1500</td>
<td>0.50</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>MATH*1200</td>
<td>0.50</td>
<td>Calculus I</td>
</tr>
<tr>
<td>PHYS*1130</td>
<td>0.50</td>
<td>Physics with Applications</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1050</td>
<td>0.50</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>CIS*1500</td>
<td>0.50</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>ENGG*1210</td>
<td>0.50</td>
<td>Engineering Mechanics I</td>
</tr>
<tr>
<td>ENGG*1500</td>
<td>0.50</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>MATH*1210</td>
<td>0.50</td>
<td>Calculus II</td>
</tr>
<tr>
<td>PHYS*1010</td>
<td>0.50</td>
<td>Introductory Electricity and Magnetism</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL*1080</td>
<td>0.50</td>
<td>Biological Concepts of Health</td>
</tr>
<tr>
<td>ENGG*2230</td>
<td>0.50</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>ENGG*2400</td>
<td>0.50</td>
<td>Engineering Systems Analysis</td>
</tr>
<tr>
<td>MATH*2270</td>
<td>0.50</td>
<td>Applied Differential Equations</td>
</tr>
<tr>
<td>STAT*2120</td>
<td>0.50</td>
<td>Probability and Statistics for Engineers</td>
</tr>
</tbody>
</table>

One of:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL*1070</td>
<td>0.50</td>
<td>Discovering Biodiversity</td>
</tr>
<tr>
<td>BIOL*1090</td>
<td>0.50</td>
<td>Introduction to Molecular and Cellular Biology</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL*2580</td>
<td>0.50</td>
<td>Introduction to Biochemistry</td>
</tr>
<tr>
<td>ENGG*2100</td>
<td>0.75</td>
<td>Engineering and Design II</td>
</tr>
<tr>
<td>ENGG*2120</td>
<td>0.50</td>
<td>Material Science</td>
</tr>
<tr>
<td>ENGG*2450</td>
<td>0.50</td>
<td>Electric Circuits</td>
</tr>
<tr>
<td>ENGG*2660</td>
<td>0.50</td>
<td>Biological Engineering Systems I</td>
</tr>
<tr>
<td>MATH*2130</td>
<td>0.50</td>
<td>Numerical Methods</td>
</tr>
</tbody>
</table>

Restricted Electives (see Program Guide for more information)

The Engineering Program requires Biological Engineering students to complete the following combination of elective credits to complete their program:

- 1.00 credits from the BIOE-1 Biological Engineering electives
- 0.75 credits from the BIOE-2 Biological Engineering design electives
- 2.00 credits from Complementary Studies electives
- 0.50 credits in Free Electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Biological Engineering Program Co-op (BIOE:C)

College of Engineering and Physical Sciences, School of Engineering

Students interested in problems requiring the application of knowledge from both the biological sciences and engineering will find a challenge as a Biological Engineer. This field of engineering is the application of principles, methods and concepts of biology to systems and tools, ranging in scale from molecular to ecosystem level. This field combines engineering principles with life sciences to design creative solutions for biological systems, with applications ranging from pharmaceutical and food manufacturing, bioconversions to reduce waste, and production of sustainable, bio-based materials. For example, a Biological Engineer concentrating on biotechnology might design and manage bioreactors to improve their productivity. A Biological Engineering graduate can pursue a career in a number of exciting fields, including food safety, bio-instrumentation, diagnostics and sensors in bio-systems, biomechanics and ergonomics.

Major (Honours Program)

Semester 1 - Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1040</td>
<td>0.50</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>ENGG*1100</td>
<td>0.75</td>
<td>Engineering and Design I</td>
</tr>
<tr>
<td>ENGG*1500</td>
<td>0.50</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>MATH*1200</td>
<td>0.50</td>
<td>Calculus I</td>
</tr>
<tr>
<td>PHYS*1130</td>
<td>0.50</td>
<td>Physics with Applications</td>
</tr>
</tbody>
</table>

Semester 2 - Winter

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1050</td>
<td>0.50</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>CIS*1500</td>
<td>0.50</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>ENGG*1210</td>
<td>0.50</td>
<td>Engineering Mechanics I</td>
</tr>
<tr>
<td>ENGG*1500</td>
<td>0.50</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>MATH*1210</td>
<td>0.50</td>
<td>Calculus II</td>
</tr>
<tr>
<td>PHYS*1010</td>
<td>0.50</td>
<td>Introductory Electricity and Magnetism</td>
</tr>
</tbody>
</table>

Semester 3 - Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL*1080</td>
<td>0.50</td>
<td>Biological Concepts of Health</td>
</tr>
<tr>
<td>ENGG*2230</td>
<td>0.50</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>ENGG*2400</td>
<td>0.50</td>
<td>Engineering Systems Analysis</td>
</tr>
<tr>
<td>MATH*2270</td>
<td>0.50</td>
<td>Applied Differential Equations</td>
</tr>
<tr>
<td>STAT*2120</td>
<td>0.50</td>
<td>Probability and Statistics for Engineers</td>
</tr>
</tbody>
</table>

One of:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL*1070</td>
<td>0.50</td>
<td>Discovering Biodiversity</td>
</tr>
<tr>
<td>BIOL*1090</td>
<td>0.50</td>
<td>Introduction to Molecular and Cellular Biology</td>
</tr>
</tbody>
</table>

Semester 4 - Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL*2580</td>
<td>0.50</td>
<td>Introduction to Biochemistry</td>
</tr>
<tr>
<td>ENGG*2100</td>
<td>0.75</td>
<td>Engineering and Design II</td>
</tr>
<tr>
<td>ENGG*2120</td>
<td>0.50</td>
<td>Material Science</td>
</tr>
<tr>
<td>ENGG*2450</td>
<td>0.50</td>
<td>Electric Circuits</td>
</tr>
<tr>
<td>ENGG*2660</td>
<td>0.50</td>
<td>Biological Engineering Systems I</td>
</tr>
<tr>
<td>MATH*2130</td>
<td>0.50</td>
<td>Numerical Methods</td>
</tr>
</tbody>
</table>

One of:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL*1070</td>
<td>0.50</td>
<td>Discovering Biodiversity</td>
</tr>
<tr>
<td>BIOL*1090</td>
<td>0.50</td>
<td>Introduction to Molecular and Cellular Biology</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*3160</td>
<td>0.50</td>
<td>Biological Engineering Systems II</td>
</tr>
<tr>
<td>ENGG*3260</td>
<td>0.50</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>ENGG*3450</td>
<td>0.50</td>
<td>Electronic Devices</td>
</tr>
<tr>
<td>ENGG*3830</td>
<td>0.50</td>
<td>Bio-Process Engineering</td>
</tr>
<tr>
<td>HIST*1250</td>
<td>0.50</td>
<td>Science and Technology in a Global Context</td>
</tr>
</tbody>
</table>

0.50 restricted electives

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*3100</td>
<td>0.75</td>
<td>Engineering and Design III</td>
</tr>
<tr>
<td>ENGG*3170</td>
<td>0.50</td>
<td>Biomaterials</td>
</tr>
<tr>
<td>ENGG*3410</td>
<td>0.50</td>
<td>Systems and Control Theory</td>
</tr>
<tr>
<td>ENGG*3430</td>
<td>0.50</td>
<td>Heat and Mass Transfer</td>
</tr>
</tbody>
</table>

1.00 restricted electives

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*3240</td>
<td>0.50</td>
<td>Engineering Economics</td>
</tr>
<tr>
<td>ENGG*4000</td>
<td>0.00</td>
<td>Proposal for Engineering Design IV</td>
</tr>
<tr>
<td>ENGG*4380</td>
<td>0.75</td>
<td>Bioreactor Design</td>
</tr>
<tr>
<td>ENGG*4390</td>
<td>0.75</td>
<td>Bio-instrumentation Design</td>
</tr>
</tbody>
</table>

1.00 restricted electives

Semester 8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*4110</td>
<td>1.00</td>
<td>Biological Engineering Design IV</td>
</tr>
</tbody>
</table>

1.75 restricted electives

Last Revision: February 6, 2019
The Engineering Program requires Biological Engineering students to complete the following combination of elective credits to complete their program:

1. 1.00 credits from the BIOE-1 Biological Engineering electives
2. 0.75 credits from the BIOE-2 Biological Engineering design electives
3. 0.50 credits in Free Electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Biomedical Engineering Program (BME)

College of Engineering and Physical Sciences, School of Engineering

Biomedical Engineering is a field of engineering that deals with health and medicine. (e.g.: electronic and mechanical devices used on biological materials, animals and humans, medical implants and instruments, ergonomics, bioinstrumentation, imaging and pharmacology). Graduates in Biomedical engineering are able to apply mathematical, scientific and engineering principles to a wide variety of fields and find employment across the private and public sectors of the health care industry. The program provides students with a common base of knowledge essential to engineering, and then allows them to select from a menu of electives to attain a degree of specialization in one of three areas, or to choose electives which broaden their general knowledge base. Elective concentrations are available in the areas of biomechanics; biosignal processing; and pharmaceuticals.

The program is built around the concept of interdisciplinary application of engineering principles to health related problems.

Major (Honours Program)

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1040</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>ENGG*1100</td>
<td>Engineering and Design I</td>
</tr>
<tr>
<td>ENGG*1500</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>MATH*1200</td>
<td>Calculus I</td>
</tr>
<tr>
<td>PHYS*1130</td>
<td>Physics with Applications</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1050</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>CIS*1500</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>ENGG*1210</td>
<td>Engineering Mechanics I</td>
</tr>
<tr>
<td>MATH*1210</td>
<td>Calculus II</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*2160</td>
<td>Engineering Mechanics II</td>
</tr>
<tr>
<td>ENGG*2230</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>ENGG*2400</td>
<td>Engineering Systems Analysis</td>
</tr>
<tr>
<td>MATH*2270</td>
<td>Applied Differential Equations</td>
</tr>
<tr>
<td>STAT*2120</td>
<td>Probability and Statistics for Engineers</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL*1080</td>
<td>Biological Concepts of Health</td>
</tr>
<tr>
<td>BIOM*2000</td>
<td>Concepts in Human Physiology</td>
</tr>
<tr>
<td>ENGG*2100</td>
<td>Engineering and Design II</td>
</tr>
<tr>
<td>ENGG*2120</td>
<td>Material Science</td>
</tr>
<tr>
<td>ENGG*2450</td>
<td>Electric Circuits</td>
</tr>
<tr>
<td>MATH*2130</td>
<td>Numerical Methods</td>
</tr>
</tbody>
</table>

Note: Students pursuing the pharmaceutical series of electives may select ENGG*2660 in Semester 4. If ENGG*2660 is selected, students must select BIOM*2000 in semester 7 in place of a 0.50 restricted elective.

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM*3010</td>
<td>Biomedical Comparative Anatomy</td>
</tr>
<tr>
<td>ENGG*3260</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>ENGG*3390</td>
<td>Signal Processing</td>
</tr>
<tr>
<td>ENGG*3450</td>
<td>Electronic Devices</td>
</tr>
<tr>
<td>HIST*1250</td>
<td>Science and Technology in a Global Context</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*3100</td>
<td>Engineering and Design III</td>
</tr>
<tr>
<td>ENGG*3170</td>
<td>Biomedical Concepts of Health</td>
</tr>
<tr>
<td>ENGG*3410</td>
<td>Systems and Control Theory</td>
</tr>
<tr>
<td>ENGG*3430</td>
<td>Heat and Mass Transfer</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*4110</td>
<td>Biomedical Engineering Design IV</td>
</tr>
</tbody>
</table>

Restrict Electives (see Program Guide for more information)

The Engineering Program requires Biomedical Engineering students to complete the following combination of elective credits to complete their program:

- 1.00 credits from the BIOE-1 Biological Engineering electives
- 0.75 credits from the BIOE-2 Biological Engineering design electives
- 2.00 credits from Complementary Studies electives
- 0.50 credits in Free Electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Biomedical Engineering Program Co-op (BME:C)

College of Engineering and Physical Sciences, School of Engineering

Biomedical Engineering is a field of engineering that deals with health and medicine. (e.g.: electronic and mechanical devices used on biological materials, animals and humans, medical implants and instruments, ergonomics, bioinstrumentation, imaging and pharmacology). Graduates in Biomedical engineering are able to apply mathematical, scientific and engineering principles to a wide variety of fields and find employment across the private and public sectors of the health care industry. The program provides students with a common base of knowledge essential to engineering, and then allows them to select from a menu of electives to attain a degree of specialization in one of three areas, or to choose electives which broaden their general knowledge base. Elective concentrations are available in the areas of biomechanics; biosignal processing; and pharmaceuticals.

The program is built around the concept of interdisciplinary application of engineering principles to health related problems.

Major (Honours Program)

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1040</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>ENGG*1100</td>
<td>Engineering and Design I</td>
</tr>
<tr>
<td>ENGG*1500</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>MATH*1200</td>
<td>Calculus I</td>
</tr>
<tr>
<td>PHYS*1130</td>
<td>Physics with Applications</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1050</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>CIS*1500</td>
<td>Introduction to Programming</td>
</tr>
<tr>
<td>ENGG*1210</td>
<td>Engineering Mechanics I</td>
</tr>
<tr>
<td>MATH*1210</td>
<td>Calculus II</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*2160</td>
<td>Engineering Mechanics II</td>
</tr>
<tr>
<td>ENGG*2230</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>ENGG*2400</td>
<td>Engineering Systems Analysis</td>
</tr>
<tr>
<td>MATH*2270</td>
<td>Applied Differential Equations</td>
</tr>
<tr>
<td>STAT*2120</td>
<td>Probability and Statistics for Engineers</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL*1080</td>
<td>Biological Concepts of Health</td>
</tr>
<tr>
<td>BIOM*2000</td>
<td>Concepts in Human Physiology</td>
</tr>
<tr>
<td>ENGG*2100</td>
<td>Engineering and Design II</td>
</tr>
<tr>
<td>ENGG*2120</td>
<td>Material Science</td>
</tr>
<tr>
<td>ENGG*2450</td>
<td>Electric Circuits</td>
</tr>
<tr>
<td>MATH*2130</td>
<td>Numerical Methods</td>
</tr>
</tbody>
</table>

Note: Students pursuing the pharmaceutical series of electives may select ENGG*2660 in Semester 4. If ENGG*2660 is selected, students must select BIOM*2000 in semester 7 in place of a 0.50 restricted elective.

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM*3010</td>
<td>Biomedical Comparative Anatomy</td>
</tr>
<tr>
<td>ENGG*3260</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>ENGG*3390</td>
<td>Signal Processing</td>
</tr>
<tr>
<td>ENGG*3450</td>
<td>Electronic Devices</td>
</tr>
<tr>
<td>HIST*1250</td>
<td>Science and Technology in a Global Context</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*3100</td>
<td>Engineering and Design III</td>
</tr>
<tr>
<td>ENGG*3170</td>
<td>Biomedical Concepts of Health</td>
</tr>
<tr>
<td>ENGG*3410</td>
<td>Systems and Control Theory</td>
</tr>
<tr>
<td>ENGG*3430</td>
<td>Heat and Mass Transfer</td>
</tr>
<tr>
<td>PATH*3610</td>
<td>Principles of Disease</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG*3240</td>
<td>Engineering Economics</td>
</tr>
<tr>
<td>ENGG*4000</td>
<td>Proposal for Engineering Design IV</td>
</tr>
<tr>
<td>ENGG*4390</td>
<td>Bio-instrumentation Design</td>
</tr>
</tbody>
</table>

Restrict Electives (see Program Guide for more information)

The Engineering Program requires Biomedical Engineering students to complete the following combination of elective credits to complete their program:

- 2.50 credits from the BME-1 Biomedical Engineering electives
- 0.75 credits from the BME-2 Biomedical Engineering design electives
- 2.00 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.
Computer Engineering is a field of engineering that focuses on the design and organization of computer systems. Graduates in Computer Engineering are able to apply mathematical, scientific and engineering principles to design and integrate computer systems suitable for applications in a wide range of fields. The program provides students with a common base of knowledge essential to computer engineering and then allows them to select from a menu of electives to attain a degree of specialization in one of four areas or to choose electives to broaden their knowledge base. Elective concentrations are available in areas of Electronic Design automation, Software Design, Artificial Intelligence and Robotics, and Microsystems.

Major (Honours Program)

Semester 1
- CHEM*1040 [0.50] General Chemistry I
- CIS*1300 [0.50] Programming
- ENGG*1100 [0.75] Engineering and Design I
- MATH*1200 [0.50] Calculus I
- PHYS*1130 [0.50] Physics with Applications

Semester 2
- CIS*2500 [0.50] Intermediate Programming
- ENGG*1210 [0.50] Engineering Mechanics I
- ENGG*1500 [0.50] Engineering Analysis
- MATH*1210 [0.50] Calculus II
- PHYS*1010 [0.50] Introductory Electricity and Magnetism

Semester 3
- CIS*2430 [0.50] Object Oriented Programming
- CIS*2520 [0.50] Data Structures
- ENGG*2400 [0.50] Systems Analysis
- ENGG*2410 [0.50] Digital Systems Design Using Descriptive Languages
- MATH*2270 [0.50] Applied Differential Equations
- STAT*2120 [0.50] Probability and Statistics for Engineers

Semester 4
- CIS*2910 [0.50] Discrete Structures in Computing II
- ENGG*2100 [0.75] Engineering and Design II
- ENGG*2450 [0.50] Electric Circuits
- ENGG*3380 [0.50] Computer Organization and Design
- MATH*2130 [0.50] Numerical Methods

Semester 5
- ENGG*2120 [0.50] Material Science
- ENGG*3390 [0.50] Signal Processing
- ENGG*3450 [0.50] Electronic Devices
- ENGG*3640 [0.50] Microcomputer Interfacing
- ENGG*3210 [0.50] Programming and Systems in a Global Context

Semester 6
- CIS*3110 [0.50] Operating Systems I
- CIS*3490 [0.50] The Analysis and Design of Computer Algorithms
- ENGG*3100 [0.75] Engineering and Design III
- ENGG*3210 [0.50] Communication Systems
- ENGG*3410 [0.50] Systems and Control Theory

Semester 7
- ENGG*3050 [0.50] Embedded Reconfigurable Computing Systems
- ENGG*3240 [0.50] Engineering Economics
- ENGG*4000 [0.50] Proposal for Engineering Design IV
- ENGG*4420 [0.75] Real-time Systems Design
- ENGG*4450 [0.50] Large-Scale Software Architecture Engineering

Semester 8
- ENGG*4170 [1.00] Computer Engineering Design IV
- ENGG*4540 [0.50] Advanced Computer Architecture
- ENGG*4550 [0.50] VLSI Digital Design

Restricted Electives (see Program Guide for more information)

The Engineering Program requires Computer Engineering students to complete the following combination of elective credits to complete their program:

- 1.50 credits from the CENG-1 Computer Engineering electives
- 2.00 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Computer Engineering Program Co-op (CENG:C)

College of Engineering and Physical Sciences, School of Engineering

Course Offerings

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGG*2100</td>
<td>Engineering and Design I</td>
</tr>
<tr>
<td>Fall</td>
<td>MATH*1200</td>
<td>Calculus I</td>
</tr>
<tr>
<td>Fall</td>
<td>PHYS*1130</td>
<td>Physics with Applications</td>
</tr>
<tr>
<td>Winter</td>
<td>MATH*2270</td>
<td>Applied Differential Equations</td>
</tr>
<tr>
<td>Winter</td>
<td>STAT*2120</td>
<td>Probability and Statistics for Engineers</td>
</tr>
<tr>
<td>Summer</td>
<td>ENGG*2120</td>
<td>Material Science</td>
</tr>
<tr>
<td>Summer</td>
<td>ENGG*3380</td>
<td>Computer Organization and Design</td>
</tr>
<tr>
<td>Summer</td>
<td>MATH*2130</td>
<td>Numerical Methods</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGG*2450</td>
<td>Electric Circuits</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGG*3640</td>
<td>Microcomputer Interfacing</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGG*3210</td>
<td>Programming and Systems in a Global Context</td>
</tr>
<tr>
<td>Winter</td>
<td>CIS*2910</td>
<td>Discrete Structures in Computing II</td>
</tr>
<tr>
<td>Winter</td>
<td>ENGG*2410</td>
<td>Digital Systems Design Using Descriptive Languages</td>
</tr>
<tr>
<td>Winter</td>
<td>MATH*2270</td>
<td>Applied Differential Equations</td>
</tr>
<tr>
<td>Winter</td>
<td>STAT*2120</td>
<td>Probability and Statistics for Engineers</td>
</tr>
<tr>
<td>Summer</td>
<td>ENGG*2120</td>
<td>Material Science</td>
</tr>
<tr>
<td>Summer</td>
<td>ENGG*3390</td>
<td>Signal Processing</td>
</tr>
<tr>
<td>Summer</td>
<td>ENGG*3450</td>
<td>Electronic Devices</td>
</tr>
<tr>
<td>Summer</td>
<td>ENGG*3640</td>
<td>Microcomputer Interfacing</td>
</tr>
<tr>
<td>Summer</td>
<td>ENGG*3210</td>
<td>Programming and Systems in a Global Context</td>
</tr>
<tr>
<td>Fall</td>
<td>CIS*3110</td>
<td>Operating Systems I</td>
</tr>
<tr>
<td>Fall</td>
<td>CIS*3490</td>
<td>The Analysis and Design of Computer Algorithms</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGG*3100</td>
<td>Engineering and Design III</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGG*3210</td>
<td>Communication Systems</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGG*3410</td>
<td>Systems and Control Theory</td>
</tr>
<tr>
<td>Winter</td>
<td>ENGG*3050</td>
<td>Embedded Reconfigurable Computing Systems</td>
</tr>
<tr>
<td>Winter</td>
<td>ENGG*3240</td>
<td>Engineering Economics</td>
</tr>
<tr>
<td>Winter</td>
<td>ENGG*4000</td>
<td>Proposal for Engineering Design IV</td>
</tr>
<tr>
<td>Winter</td>
<td>ENGG*4420</td>
<td>Real-time Systems Design</td>
</tr>
<tr>
<td>Winter</td>
<td>ENGG*4450</td>
<td>Large-Scale Software Architecture Engineering</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGG*4170</td>
<td>Computer Engineering Design IV</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGG*4540</td>
<td>Advanced Computer Architecture</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGG*4550</td>
<td>VLSI Digital Design</td>
</tr>
</tbody>
</table>
Computer Engineering is a field of engineering that focuses on the design and organization of computer systems. Graduates in Computer Engineering are able to apply mathematical, scientific and engineering principles to design and integrate computer systems suitable for applications in a wide range of fields. The program provides students with a common base of knowledge essential to computer engineering and then allows them to select from a menu of electives to attain a degree of specialization in one of four areas or to choose electives to broaden their knowledge base. Elective concentrations are available in areas of Electronic Design automation, Software Design, Artificial Intelligence and Robotics, and Microsystems.

Major (Honours Program)

Semester 1 - Fall
- CHEM*1040 [0.50] General Chemistry I
- CIS*1300 [0.50] Programming
- ENGG*1100 [0.75] Engineering and Design I
- MATH*1200 [0.50] Calculus I
- PHYS*1110 [0.50] Physics with Applications

Semester 2 - Winter
- CIS*2500 [0.50] Intermediate Programming
- ENGG*1210 [0.50] Engineering Mechanics I
- ENGG*1500 [0.50] Engineering Analysis
- MATH*1210 [0.50] Calculus II
- PHYS*1010 [0.50] Introductory Electricity and Magnetism

Semester 3 - Fall
- CIS*2430 [0.50] Object Oriented Programming
- CIS*2520 [0.50] Data Structures
- COOP*1100 [0.00] Introduction to Co-operative Education
- ENGG*2400 [0.50] Engineering Systems Analysis
- ENGG*2410 [0.50] Digital Systems Design Using Descriptive Languages
- MATH*2270 [0.50] Applied Differential Equations
- STAT*2120 [0.50] Probability and Statistics for Engineers

Semester 4 - Winter
- CIS*2910 [0.50] Discrete Structures in Computing II
- ENGG*2100 [0.75] Engineering and Design II
- ENGG*2450 [0.50] Electric Circuits
- ENGG*3380 [0.50] Computer Organization and Design
- MATH*2130 [0.50] Numerical Methods
- 0.50 restricted electives (CIS*2750 recommended for students interested in the software engineering stream)

Summer Semester
- COOP*1000 [0.00] Co-op Work Term I

Semester 5 - Fall
- ENGG*2120 [0.50] Material Science
- ENGG*3390 [0.50] Signal Processing
- ENGG*3450 [0.50] Electronic Devices
- ENGG*3640 [0.50] Microcomputer Interfacing
- HIST*1250 [0.50] Science and Technology in a Global Context
- 0.50 restricted electives

Winter Semester
- COOP*2000 [0.00] Co-op Work Term II

Summer Semester
- COOP*3000 [0.00] Co-op Work Term III

Semester 6 - Fall
- ENGG*3050 [0.50] Embedded Reconfigurable Computing Systems
- ENGG*3240 [0.50] Engineering Economics
- ENGG*4420 [0.75] Real-time Systems Design
- ENGG*4450 [0.50] Large-Scale Software Architecture Engineering
- 1.00 restricted electives

Semester 7 - Winter
- CIS*3110 [0.50] Operating Systems I
- CIS*3490 [0.50] The Analysis and Design of Computer Algorithms
- ENGG*3100 [0.75] Engineering and Design III
- ENGG*3210 [0.50] Communication Systems
- ENGG*3410 [0.50] Systems and Control Theory
- 0.50 restricted electives

Summer Semester
- COOP*4000 [0.00] Co-op Work Term IV

Fall Semester
- COOP*5000 [0.00] Co-op Work Term V
- ENGG*4000 [0.00] Proposal for Engineering Design IV

Semester 8 - Winter
- ENGG*4170 [1.00] Computer Engineering Design IV
- ENGG*4540 [0.50] Advanced Computer Architecture
- ENGG*4550 [0.50] VLSI Digital Design

Restricted Electives (see Program Guide for more information)

The Engineering Program requires Computer Engineering students to complete the following combination of elective credits to complete their program:

- 1.50 credits from the CENG-1 Computer Engineering electives
- 2.00 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Engineering Systems and Computing Program (ESC)

College of Engineering and Physical Sciences, School of Engineering

In the last quarter century, the computer has grown so rapidly in importance that engineering, science, business and industry could not function without it. With this growth, a need has evolved for specialists who can incorporate computers and information into complex industrial processes. The Engineering Systems and Computing program has been conceived to satisfy this need. Graduates from this program will have, in addition to the basic engineering skills, the ability to identify application areas where computer technology represents the optimum solution, specify appropriate software for process control, data reduction and/or expert system implementation and integrate the computer into the overall system application.

Major (Honours Program)

Semester 1
- CHEM*1040 [0.50] General Chemistry I
- CIS*1300 [0.50] Programming
- ENGG*1100 [0.75] Engineering and Design I
- MATH*1200 [0.50] Calculus I
- PHYS*1110 [0.50] Physics with Applications

Semester 2
- CIS*2500 [0.50] Intermediate Programming
- ENGG*1210 [0.50] Engineering Mechanics I
- ENGG*1500 [0.50] Engineering Analysis
- MATH*1210 [0.50] Calculus II
- PHYS*1010 [0.50] Introductory Electricity and Magnetism

Semester 3
- CIS*2430 [0.50] Object Oriented Programming
- CIS*2520 [0.50] Data Structures
- ENGG*2400 [0.50] Engineering Systems Analysis
- ENGG*2410 [0.50] Digital Systems Design Using Descriptive Languages
- MATH*2270 [0.50] Applied Differential Equations
- STAT*2120 [0.50] Probability and Statistics for Engineers

Semester 4
- CIS*2910 [0.50] Discrete Structures in Computing II
- ENGG*2100 [0.75] Engineering and Design II
- ENGG*2450 [0.50] Electric Circuits
- ENGG*3380 [0.50] Computer Organization and Design
- MATH*2130 [0.50] Numerical Methods
- 0.50 restricted electives

Semester 5
- ENGG*2120 [0.50] Material Science
- ENGG*3390 [0.50] Signal Processing
- ENGG*3450 [0.50] Electronic Devices
- ENGG*3640 [0.50] Microcomputer Interfacing
- HIST*1250 [0.50] Science and Technology in a Global Context
- 0.50 restricted electives

Semester 6
- ENGG*3050 [0.50] Embedded Reconfigurable Computing Systems
- ENGG*3240 [0.50] Engineering Economics
- ENGG*4420 [0.75] Real-time Systems Design
- ENGG*4450 [0.50] Large-Scale Software Architecture Engineering
- 1.00 restricted electives

Semester 7
- CIS*3110 [0.50] Operating Systems I
- CIS*3490 [0.50] The Analysis and Design of Computer Algorithms
- ENGG*3100 [0.75] Engineering and Design III
- ENGG*3210 [0.50] Communication Systems
- ENGG*3410 [0.50] Systems and Control Theory
- 0.50 restricted electives

Semester 8
- COOP*4000 [0.00] Co-op Work Term IV
- ENGG*4000 [0.00] Proposal for Engineering Design IV
- ENGG*4420 [0.75] Real-time Systems Design
- ENGG*4450 [0.50] Large-Scale Software Architecture Engineering
- 1.00 or 1.25 restricted electives

Additional Information
- 1.00 electives
- 0.50 restricted electives
Restricted Electives (see Program Guide for more information)

The Engineering Program requires Engineering Systems and Computing students to complete the following combination of elective credits to complete their program:

- 1.50 credits from the ESC-1 Engineering Systems and Computing electives
- 0.75 credits from the ESC-2 Engineering Systems and Computing electives
- 2.00 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Engineering Systems and Computing Program Co-op (ESC:C)

College of Engineering and Physical Sciences, School of Engineering

In the last quarter century, the computer has grown so rapidly in importance that engineering, science, business and industry could not function without it. With this growth, a need has evolved for specialists who can incorporate computers and information into complex industrial processes. The Engineering Systems and Computing program has been conceived to satisfy this need. Graduates from this program will have, in addition to the basic engineering skills, the ability to identify application areas where computer technology represents the optimum solution, specify appropriate software for process control, data reduction and/or expert system implementation and integrate the computer into the overall system application.

Major (Honours Program)

Semester 1 - Fall
CHEM*1040 [0.50] General Chemistry I
CIS*1300 [0.50] Programming
ENGG*1100 [0.75] Engineering and Design I
MATH*1200 [0.50] Calculus I
PHYS*1130 [0.50] Physics with Applications

Semester 2 - Winter
CIS*2500 [0.50] Intermediate Programming
ENGG*1210 [0.50] Engineering Mechanics I
ENGG*1500 [0.50] Engineering Analysis
MATH*1210 [0.50] Calculus II
PHYS*1010 [0.50] Introductory Electricity and Magnetism

Semester 3 - Fall
CIS*2430 [0.50] Object Oriented Programming
CIS*2520 [0.50] Data Structures
COOP*1100 [0.00] Introduction to Co-operative Education
ENGG*2230 [0.50] Fluid Mechanics
ENGG*2400 [0.50] Engineering Systems Analysis
ENGG*2410 [0.50] Digital Systems Design Using Descriptive Languages
MATH*2270 [0.50] Applied Differential Equations

Semester 4 - Winter
ENGG*2100 [0.75] Engineering and Design II
ENGG*2120 [0.50] Material Science
ENGG*2450 [0.50] Electric Circuits
MATH*2130 [0.50] Numerical Methods
STAT*2120 [0.50] Probability and Statistics for Engineers

Summer Semester
COOP*1000 [0.00] Co-op Work Term I

Semester 5 - Fall
ENGG*3260 [0.50] Thermodynamics
ENGG*3390 [0.50] Signal Processing
ENGG*3450 [0.50] Electronic Devices
ENGG*3640 [0.50] Microcomputer Interfacing

Winter Semester
COOP*2000 [0.00] Co-op Work Term II

Semester 6 - Fall
ENGG*3240 [0.50] Engineering Economics
ENGG*4420 [0.75] Real-time Systems Design
ENGG*4450 [0.50] Large-Scale Software Architecture Engineering

Semester 7 - Winter
ENGG*3100 [0.75] Engineering and Design III
ENGG*3130 [0.50] Modelling Complex Systems
ENGG*3410 [0.50] Systems and Control Theory
ENGG*3430 [0.50] Heat and Mass Transfer
HIST*1250 [0.50] Science and Technology in a Global Context

Summer Semester
COOP*4000 [0.00] Co-op Work Term IV

Fall Semester
COOP*5000 [0.00] Co-op Work Term V
ENGG*4000 [0.00] Proposal for Engineering Design IV

Semester 8 - Winter
ENGG*4120 [1.00] Engineering Systems and Computing Design IV
ENGG*4280 [0.75] Digital Process Control Design

Restricted Electives (see Program Guide for more information)

The Engineering Program requires Engineering Systems and Computing students to complete the following combination of elective credits to complete their program:

- 1.50 credits from the ESC-1 Engineering Systems and Computing electives
- 0.75 credits from the ESC-2 Engineering Systems and Computing electives
- 2.00 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Environmental Engineering Program (ENVE)

College of Engineering and Physical Sciences, School of Engineering

The degradation of the environment is a concern shared by citizens, government agencies, non-governmental agencies and industries. The Environmental Engineering program offered by the School of Engineering provides graduates with design and engineering skills to minimize and prevent the impact of human activities on water, soil and air systems. Both simple and innovative solutions are part of the tool box. Graduates will also creatively integrate humanistic and social perspectives in their solutions.

Major (Honours Program)

Semester 1
CHEM*1040 [0.50] General Chemistry I
ENGG*1100 [0.75] Engineering and Design I
ENGG*1500 [0.50] Engineering Analysis
MATH*1200 [0.50] Calculus I
PHYS*1130 [0.50] Physics with Applications

Semester 2
CHEM*1050 [0.50] General Chemistry II
CIS*1500 [0.50] Introduction to Programming
ENGG*1210 [0.50] Engineering Mechanics I
MATH*1210 [0.50] Calculus II
PHYS*1010 [0.50] Introductory Electricity and Magnetism

Semester 3
ENGG*2100 [0.75] Engineering and Design II
ENGG*2120 [0.50] Material Science
ENGG*2450 [0.50] Electric Circuits
MATH*2130 [0.50] Numerical Methods
STAT*2120 [0.50] Probability and Statistics for Engineers

0.50 restricted electives

Semester 4
ENGG*2230 [0.50] Fluid Mechanics
ENGG*2560 [0.50] Environmental Engineering Systems
HIST*1250 [0.50] Science and Technology in a Global Context
MATH*2130 [0.50] Numerical Methods
STAT*2120 [0.50] Probability and Statistics for Engineers

0.50 restricted electives

Semester 5
ENGG*3180 [0.50] Air Quality
ENGG*3240 [0.50] Engineering Economics
ENGG*3260 [0.50] Thermodynamics
ENGG*3590 [0.50] Water Quality
ENGG*3650 [0.50] Hydrology
ENGG*3670 [0.50] Soil Mechanics

Semester 6
ENGG*3100 [0.75] Engineering and Design III
ENGG*3220 [0.50] Groundwater Engineering
ENGG*3410 [0.50] Systems and Control Theory
ENGG*3430 [0.50] Heat and Mass Transfer
ENGG*3470 [0.50] Mass Transfer Operations

0.50 restricted electives

Semester 7
ENGG*4000 [0.00] Proposal for Engineering Design IV
ENGG*4340 [0.50] Solid and Hazardous Waste Management

2019-2020 Undergraduate Calendar
The Engineering Program requires Environmental Engineering students to complete the following combination of elective credits to complete their program:

- 1.00 credits from the ENVE-1 Environmental Engineering electives
- 2.00 credits from the ENVE-2 Environmental Engineering electives
- 1.50 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Minor (Honours Program)

Students must be registered in a B.Eng degree program specialization other than Environmental Engineering to apply for a Minor in Environmental Engineering. A Minor in Environmental Engineering consists of at least 5.00 course credits. A maximum of 2.50 course credits taken as part of the Environmental Engineering Minor may also be applied toward the requirements of the B.Eng. Major specialization.

The following courses (2.00 credits) are required:

- CHEM*1050 [0.50] General Chemistry I
- ENGG*2560 [0.50] Environmental Engineering Systems
- ENGG*3180 [0.50] Air Quality
- ENGG*3590 [0.50] Water Quality

At least 1.00 credit must be selected from the following courses:

- BIOC*2580 [0.50] Introduction to Biochemistry
- CHEM*2700 [0.50] Organic Chemistry I
- CHEM*3360 [0.50] Environmental Chemistry and Toxicology
- ENGG*2800 [0.50] Energy Resources & Technologies
- ENGG*3250 [0.50] Energy Management & Utilization
- ENGG*3470 [0.50] Mass Transfer Operations
- ENGG*4070 [0.50] Life Cycle Assessment for Sustainable Design
- ENGG*4240 [0.50] Site Remediation
- ENGG*4340 [0.50] Solid and Hazardous Waste Management
- ENGG*4510 [0.50] Assessment & Management of Risk
- ENGG*4760 [0.50] Biological Wastewater Treatment Design
- ENGG*4770 [0.50] Physical & Chemical Water and Wastewater Treatment Design
- ENGG*4810 [0.50] Control of Atmospheric Particulates
- ENGG*4820 [0.50] Atmospheric Emission Control: Combustion Systems
- ENV*2030 [0.50] Meteorology and Climatology

At least 1.00 credit must be selected from the following courses:

- ECON*2100 [0.50] Economic Growth and Environmental Quality
- EDRD*2650 [0.50] Introduction to Planning and Environmental Law
- ENV*2270 [0.50] Impacts of Climate Change
- GEOG*1220 [0.50] Human Impact on the Environment
- GEOG*2210 [0.50] Environment and Resources
- GEOG*3020 [0.50] Global Environmental Change
- GEOG*3210 [0.50] Management of the Biophysical Environment
- PHIL*3570 [0.50] Philosophy of the Environment
- POLS**3370 [0.50] Environmental Politics and Governance
- SOC*2280 [0.50] Society and Environment

Environmental Engineering Program Co-op (ENVE:C)

College of Engineering and Physical Sciences, School of Engineering

The degradation of the environment is a concern shared by citizens, government agencies, non governmental agencies and businesses. The Environmental Engineering program offered by the School of Engineering provides graduates with design and engineering skills to minimize and prevent the impact of human activities on water, soil and air systems. Both simple and innovative solutions are part of the tool box. Graduates will also creatively integrate humanistic and social perspectives in their solutions.

Major (Honours Program)

Semester 1 - Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1040</td>
<td>0.50</td>
</tr>
<tr>
<td>ENGG*1100</td>
<td>0.75</td>
</tr>
<tr>
<td>ENGG*1500</td>
<td>0.50</td>
</tr>
<tr>
<td>MATH*1200</td>
<td>0.50</td>
</tr>
<tr>
<td>PHYS*1130</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Semester 2 - Winter

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM*1050</td>
<td>0.50</td>
</tr>
<tr>
<td>CS*1500</td>
<td>0.50</td>
</tr>
<tr>
<td>ENGG*1210</td>
<td>0.50</td>
</tr>
<tr>
<td>MATH*1210</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Semester 3 - Fall

- ENGG*2130 [0.50] Introduction to Environmental Engineering
- ENGG*2230 [0.50] Fluid Mechanics
- ENGG*2400 [0.50] Engineering Systems Analysis
- MATH*2270 [0.50] Applied Differential Equations
- STAT*2120 [0.50] Probability and Statistics for Engineers

One of:

- BIOL*1090 [0.50] Introduction to Molecular and Cellular Biology
- MICR*2420 [0.50] Introduction to Microbiology

Semester 4 - Winter

- ENGG*2130 [0.75] Engineering Design II
- ENGG*2210 [0.50] Material Science
- ENGG*2560 [0.50] Environmental Engineering Systems
- HIST*1250 [0.50] Science and Technology in a Global Context
- MATH*2210 [0.50] Numerical Methods

Summer Semester

- COOP*1000 [0.00] Co-op Work Term I

Semester 5 - Fall

- ENGG*3180 [0.50] Air Quality
- ENGG*3240 [0.50] Engineering Economics
- ENGG*3260 [0.50] Thermodynamics
- ENGG*3590 [0.50] Water Quality
- ENGG*3650 [0.50] Hydrology
- ENGG*3670 [0.50] Soil Mechanics

Winter Semester

- COOP*2000 [0.00] Co-op Work Term II

Semester 6 - Fall

- ENGG*3430 [0.50] Solid and Hazardous Waste Management
- ENGG*3780 [0.75] Urban Water Systems Design

Semester 7 - Winter

- ENGG*3100 [0.75] Engineering and Design III
- ENGG*3220 [0.50] Groundwater Engineering
- ENGG*3410 [0.50] Systems and Control Theory
- ENGG*3430 [0.50] Heat and Mass Transfer
- ENGG*3470 [0.50] Mass Transfer Operations

Summer Semester

- COOP*3000 [0.00] Co-op Work Term III

Semester 8 - Winter

- ENGG*4130 [1.00] Environmental Engineering Design IV

Restricted Electives (see Program Guide for more information)

The Engineering Program requires Environmental Engineering students to complete the following combination of elective credits to complete their program:

- 1.00 credits from the ENVE-1 Environmental Engineering electives
- 2.00 credits from the ENVE-2 Environmental Engineering electives
- 1.50 credits from Complementary Studies electives

Food Engineering (FENG)

College of Engineering and Physical Sciences, School of Engineering

The minor can be satisfied by taking the following additional courses:

- One of:
 - STAT*2120 [0.50] Data Science
 - STAT*2120 [0.50] Introduction to Data Science

Minor (Honours Program)

Students must be registered in the B.Eng. degree program to apply for a Minor in Food Engineering.

The minor can be satisfied by taking the following additional courses:

- One of:
 - STAT*2120 [0.50] Data Science
 - STAT*2120 [0.50] Introduction to Data Science

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Food Engineering (FENG)

- ACCT*1220 [0.50] Introductory Financial Accounting
- BIOL*2400 [0.50] Introduction to Biochemistry
- ENGG*2230 [0.50] Bioprocess Engineering
- ENGG*2660 [0.50] Bioprocess Engineering Systems I
- ENGG*3830 [0.50] Bio-Process Engineering
- ENGG*4130 [1.00] Environmental Engineering Design IV

Restricted Electives (see Program Guide for more information)

The Engineering Program requires Environmental Engineering students to complete the following combination of elective credits to complete their program:

- 1.00 credits from the ENVE-1 Environmental Engineering electives
- 2.00 credits from the ENVE-2 Environmental Engineering electives
- 1.50 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.
College of Engineering and Physical Sciences, School of Engineering

Mechanical Engineering at Guelph is built around concepts of sustainability and sustainable design to equip graduates to tackle issues associated with emerging technologies. Graduates in mechanical engineering are able to apply mathematical, scientific and engineering principles to a wide variety of fields and find employment across the private and public sectors. The program provides students with a common base of knowledge essential to mechanical engineering, and then allows them to select from a menu of electives to attain a degree of specialization in one of five areas, or to choose electives which broaden their general knowledge base. Elective concentrations are available in the areas of wind and solar energy, food and beverage engineering, mechatronics, manufacturing system design and biomechanics.

Major (Honours Program)

Semester 1	CHEM*1040 [0.50] General Chemistry I
Semester 1	CIS*1500 [0.50] Introduction to Programming
Semester 1	ENGG*1100 [0.75] Engineering and Design I
Semester 1	MATH*1200 [0.50] Calculus I
Semester 1	PHYS*1130 [0.50] Physics with Applications
Semester 2	ENGG*1210 [0.50] Engineering Mechanics I
Semester 2	ENGG*1500 [0.50] Engineering Analysis
Semester 2	MATH*1210 [0.50] Calculus II
Semester 2	PHYS*1010 [0.50] Introductory Electricity and Magnetism
Semester 2	0.50 restricted electives

Semester 3

Semester 3	ENGG*1070 [0.25] Occupational Health and Safety
Semester 3	ENGG*2100 [0.75] Engineering and Design II
Semester 3	ENGG*2120 [0.50] Material Science
Semester 3	ENGG*2160 [0.50] Engineering Mechanics II
Semester 3	ENGG*2400 [0.50] Engineering Systems Analysis
Semester 3	MATH*2270 [0.50] Applied Differential Equations
Semester 4	ENGG*2180 [0.50] Introduction to Manufacturing Processes
Semester 4	ENGG*2230 [0.50] Fluid Mechanics
Semester 4	ENGG*2340 [0.50] Kinematics and Dynamics
Semester 4	ENGG*2450 [0.50] Electric Circuits
Semester 4	MATH*2130 [0.50] Numerical Methods
Semester 4	STAT*2120 [0.50] Probability and Statistics for Engineers
Semester 5	ENGG*3240 [0.50] Engineering Economics
Semester 5	ENGG*3260 [0.50] Thermodynamics
Semester 5	ENGG*3280 [0.50] Machine Design
Semester 5	ENGG*3510 [0.50] Electromechanical Devices
Semester 5	HIST*1250 [0.50] Science and Technology in a Global Context
Semester 6	ENGG*3100 [0.75] Engineering and Design III
Semester 6	ENGG*3370 [0.50] Applied Fluids and Thermodynamics
Semester 6	ENGG*3410 [0.50] Systems and Control Theory
Semester 6	ENGG*3430 [0.50] Heat and Mass Transfer
Semester 7	ENGG*3140 [0.50] Mechanical Vibration
Semester 7	ENGG*4000 [0.00] Proposal for Engineering Design IV
Semester 7	2.00 restricted electives

Semester 8

| Semester 8 | ENGG*4160 [1.00] Mechanical Engineering Design IV |
| Semester 8 | 1.75 restricted electives |

Restricted Electives (see Program Guide for more information)

The Engineering Program requires Mechanical Engineering students to complete the following combination of elective credits to complete their program:

- 3.50 credits from the MECH-1 Mechanical Engineering electives
- 0.75 credits from the MECH-2 Mechanical Engineering design electives
- 2.00 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Mechanical Engineering Program Co-op (MECH:C)

School of Engineering, College of Engineering and Physical Sciences

Mechanical Engineering at Guelph is built around concepts of sustainability and sustainable design to equip graduates to tackle issues associated with emerging technologies. Graduates in mechanical engineering are able to apply mathematical, scientific and engineering principles to a wide variety of fields and find employment across the private and public sectors. The program provides students with a common base of knowledge essential to mechanical engineering, and then allows them to select from a menu of electives to attain a degree of specialization in one of five areas, or to choose electives which broaden their general knowledge base. Elective concentrations are available in the areas of wind and solar energy, food and beverage engineering, mechatronics, manufacturing system design and biomechanics.

Major (Honours Program)

Semester 1 - Fall	CHEM*1040 [0.50] General Chemistry I
Semester 1 - Fall	CIS*1500 [0.50] Introduction to Programming
Semester 1 - Fall	ENGG*1210 [0.50] Engineering Mechanics I
Semester 1 - Fall	ENGG*1500 [0.50] Engineering Analysis
Semester 1 - Fall	0.50 restricted electives

Semester 2 - Winter	ENGG*1210 [0.50] Engineering Mechanics I
Semester 2 - Winter	ENGG*1500 [0.50] Engineering Analysis
Semester 2 - Winter	0.50 restricted electives

Semester 3 - Fall	COOP*1100 [0.00] Introduction to Co-operative Education
Semester 3 - Fall	ENGG*1070 [0.25] Occupational Health and Safety
Semester 3 - Fall	ENGG*2120 [0.75] Engineering and Design II
Semester 3 - Fall	ENGG*2160 [0.50] Engineering Mechanics II
Semester 3 - Fall	ENGG*2400 [0.50] Engineering Systems Analysis
Semester 3 - Fall	MATH*2270 [0.50] Applied Differential Equations

Semester 4 - Winter	ENGG*2180 [0.50] Introduction to Manufacturing Processes
Semester 4 - Winter	ENGG*2230 [0.50] Fluid Mechanics
Semester 4 - Winter	ENGG*2340 [0.50] Kinematics and Dynamics
Semester 4 - Winter	ENGG*2450 [0.50] Electric Circuits
Semester 4 - Winter	MATH*2130 [0.50] Numerical Methods
Semester 4 - Winter	STAT*2120 [0.50] Probability and Statistics for Engineers

Summer Semester

| Summer Semester | COOP*1000 [0.00] Co-op Work Term I |

Semester 5 - Fall	ENGG*3240 [0.50] Engineering Economics
Semester 5 - Fall	ENGG*3260 [0.50] Thermodynamics
Semester 5 - Fall	ENGG*3280 [0.75] Machine Design
Semester 5 - Fall	ENGG*3510 [0.50] Electromechanical Devices
Semester 5 - Fall	HIST*1250 [0.50] Science and Technology in a Global Context
Semester 5 - Fall	0.50 restricted electives

Winter Semester

| Winter Semester | COOP*2000 [0.00] Co-op Work Term II |

| Summer Semester | COOP*3000 [0.00] Co-op Work Term III |

| Semester 6 - Fall | ENGG*3140 [0.50] Mechanical Vibration |
| Semester 6 - Fall | 2.50 restricted electives |

| Semester 7 - Winter | ENGG*3100 [0.75] Engineering and Design III |
| Semester 7 - Winter | ENGG*3370 [0.50] Applied Fluids and Thermodynamics |

Last Revision: February 6, 2019
X. Degree Programs, Bachelor of Engineering [B.Eng.]

Water Resources Engineering Program (WRE)
College of Engineering and Physical Sciences, School of Engineering

Water resources engineering focuses on the use and management of land and water resources in rural and urban watersheds. The hydrologic and hydraulic behaviour of watershed flow systems is combined with engineering science and ecological principles in the design of water management systems and strategies. Water management includes flood prevention, warning and control; drainage; design of natural channels; irrigation; and erosion prevention and control. The supply of water for municipal, industrial and agricultural purposes is considered in the context of resource conservation. Identification of potential point and diffused sources of pollutants is used to develop efficient, environmentally sustainable and economical methods to preserve high-quality water to sustain human life and water-dependent ecosystems.

Major (Honours Program)

Semester 1
- **CHEM*1040** [0.50] General Chemistry I
- **ENGG*1100** [0.75] Engineering and Design I
- **ENGG*1500** [0.50] Engineering Analysis
- **MATH*1200** [0.50] Calculus I
- **PHYS*1130** [0.50] Physics with Applications

Semester 2
- **CHEM*1050** [0.50] General Chemistry II
- **CIS*1500** [0.50] Introduction to Programming
- **ENGG*1210** [0.50] Engineering Mechanics I
- **MATH*1210** [0.50] Calculus II
- **PHYS*1010** [0.50] Introductory Electricity and Magnetism

Semester 3
- **ENGG*2230** [0.50] Fluid Mechanics
- **ENGG*2400** [0.50] Engineering Systems Analysis
- **GEOG*2000** [0.50] Geomorphology
- **MATH*2270** [0.50] Applied Differential Equations
- **STAT*2120** [0.50] Probability and Statistics for Engineers

One of:
- **BIOL*1090** [0.50] Introduction to Molecular and Cellular Biology
- **MICR*2420** [0.50] Introduction to Microbiology

Semester 4
- **ENGG*2100** [0.75] Engineering and Design II
- **ENGG*2120** [0.50] Material Science
- **ENNG*2550** [0.50] Water Management
- **ENNG*2560** [0.50] Environmental Engineering Systems
- **MATH*2130** [0.50] Numerical Methods

0.50 restricted electives

Semester 5
- **ENNG*3240** [0.50] Engineering Economics
- **ENNG*3260** [0.50] Thermodynamics
- **ENNG*3590** [0.50] Water Quality
- **ENNG*3650** [0.50] Hydrology

0.50 restricted electives

Semester 6
- **ENNG*3100** [0.75] Engineering and Design III
- **ENNG*3220** [0.50] Groundwater Engineering
- **ENNG*3430** [0.50] Heat and Mass Transfer

1.00 restricted electives

Summer Semester

Semester 7
- **ENNG*3340** [0.50] Geographic Information Systems in Environmental Engineering
- **ENNG*4000** [0.00] Proposal for Engineering Design IV
- **ENNG*4360** [0.75] Soil-Water Conservation Systems Design
- **ENNG*4370** [0.75] Urban Water Systems Design

1.00 restricted electives

Restrict Electives (see Program Guide for more information)

The Engineering Program requires Mechanical Engineering students to complete the following combination of elective credits to complete their program:

- 3.50 credits from the MECH-1 Mechanical Engineering electives
- 0.75 credits from the MECH-2 Mechanical Engineering design electives
- 2.00 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.

Water Resources Engineering Program Co-op (WRE:C)
College of Engineering and Physical Sciences, School of Engineering

Water resources engineering focuses on the use and management of land and water resources in rural and urban watersheds. The hydrologic and hydraulic behaviour of watershed flow systems is combined with engineering science and ecological principles in the design of water management systems and strategies. Water management includes flood prevention, warning and control; drainage; design of natural channels; irrigation; and erosion prevention and control. The supply of water for municipal, industrial and agricultural purposes is considered in the context of resource conservation. Identification of potential point and diffused sources of pollutants is used to develop efficient, environmentally sustainable and economical methods to preserve high-quality water to sustain human life and water-dependent ecosystems.

Major (Honours Program)

Semester 1 - Fall
- **CHEM*1040** [0.50] General Chemistry I
- **ENNG*1100** [0.75] Engineering and Design I
- **ENNG*1500** [0.50] Engineering Analysis
- **MATH*1200** [0.50] Calculus I
- **PHYS*1130** [0.50] Physics with Applications

Semester 2 - Winter
- **CHEM*1050** [0.50] General Chemistry II
- **CIS*1500** [0.50] Introduction to Programming
- **ENNG*1210** [0.50] Engineering Mechanics I
- **MATH*1210** [0.50] Calculus II
- **PHYS*1010** [0.50] Introductory Electricity and Magnetism

Semester 3 - Fall
- **ENNG*2230** [0.50] Fluid Mechanics
- **ENNG*2400** [0.50] Engineering Systems Analysis
- **GEOG*2000** [0.50] Geomorphology
- **MATH*2270** [0.50] Applied Differential Equations
- **STAT*2120** [0.50] Probability and Statistics for Engineers

One of:
- **BIOL*1090** [0.50] Introduction to Molecular and Cellular Biology
- **MICR*2420** [0.50] Introduction to Microbiology

Semester 4 - Winter
- **ENNG*2100** [0.75] Engineering and Design II
- **ENNG*2120** [0.50] Material Science
- **ENNG*2550** [0.50] Water Management
- **ENNG*2560** [0.50] Environmental Engineering Systems
- **MATH*2130** [0.50] Numerical Methods

0.50 restricted electives

Semester 5 - Fall
- **ENNG*3240** [0.50] Engineering Economics
- **ENNG*3260** [0.50] Thermodynamics
- **ENNG*3590** [0.50] Water Quality
- **ENNG*3650** [0.50] Hydrology

0.50 restricted electives

Summer Semester
- **ENNG*3100** [0.75] Engineering and Design III
- **ENNG*3220** [0.50] Groundwater Engineering
- **ENNG*3430** [0.50] Heat and Mass Transfer

1.00 restricted electives

Restricted Electives (see Program Guide for more information)

The Engineering Program requires Water Resources Engineering students to complete the following combination of elective credits to complete their program:

- 1.00 credits from the WRE-1 Water Resources Engineering electives
- 3.50 credits from the MECH-1 Mechanical Engineering electives
- 1.00 credits from the WRE-2 Environmental and Water Resources electives
- 2.00 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.
The Engineering Program requires Water Resources Engineering students to complete the following combination of elective credits to complete their program:

- 1.00 credits from the WRE-1 Water Resources Engineering electives
- 1.00 credits from the WRE-2 Environmental and Water Resources electives
- 2.00 credits from Complementary Studies electives

Consult the Program Guide for further information on the prerequisite requirements specific to each elective. Students can take a maximum of 1.50 credits at the 1000 level from the above list of electives.