Milk Grading and Defects

The importance of milk grading lies in the fact that dairy products are only as good as the raw materials from which they were made. It is important that dairy personnel have a knowledge of sensory perception and evaluation techniques. The identification of off-flavours and desirable flavours, as well as knowledge of their likely cause, should enable the production of high quality milk, and subsequently, high quality dairy products.

An understanding of the principles of sensory evaluation are necessary for grading. All five primary senses are used in the sensory evaluation of dairy products: sight, taste, smell, touch and sound. The greatest emphasis, however, is placed on taste and smell.

The Sense of Taste

Taste buds, or receptors, are chiefly on the upper surface of the tongue, but may also be present in the cheek and soft palates of young people. These buds, about 900 in number, must make contact with the flavouring agent before a taste sensation occurs. Saliva, of course, is essential in aiding this contact. There are four different types of nerve endings on the tongue which detect the four basic "mouth" flavours -sweet, salt, sour, and bitter. Samples must, therefore, be spread around in the mouth in order to make positive flavour identification. In addition to these basic tastes, the mouth also allows us to get such reactions as coolness, warmth, sweetness, astringency, etc. 

The Sense of Smell

We are much more perceptive to the sense of smell than we are to taste. For instance, it is possible for an odouriferous material such as mercaptain to be detected in 20 billion parts of air. The centres of olfaction are located chiefly in the uppermost part of the nasal cavity. To be detectable by smell, a substance must dissolve at body temperature and be soluble in fat solvents.

Note: The sense of both taste and smell may become fatigued during steady use. A good judge does not try to examine more than one sample per minute. Rinsing the mouth with water between samples may help to restore sensitivity.

Milk Grading Techniques

Temperature should be between 60-70° F (15.5-21° C) so that any odour present may be detected readily by sniffing the container. Also, we want a temperature rise when taking the sample into the mouth; this serves to volatize any notable constituents.

Noting the odour by placing the nose directly over the container immediately after shaking and taking a full "whiff" of air. Any off odour present may be noted.

Need to make sure we have a representative sample; mixing and agitation are important.

Agitation leaves a thin film of milk on the inner surface which tends to evaporate giving off odour if present.

During sampling, take a generous sip, roll about the mouth, note flavour sensation, and expectorate. Swallowing milk is a poor practice.

Can enhance the after-taste by drawing a breath of fresh air slowly through the mouth and then exhale slowly through the nose. With this practice, even faint odours can be noted.

Milk has a flavour defect if it has an odour, a foretaste or an aftertaste, or does not leave the mouth in a clean, sweet, pleasant condition after tasting.

Characterization of Flavour Defects - ADSA

Lipolytic or Hydrolytic rancidity

Rancidity arises from the hydrolysis of milkfat by an enzyme called the lipoprotein lipase (LPL). The flavour is due to the short chain fatty acids produced, particularly butyric acid. LPL can be indigenous or bacterial. It is active at the fat/water interface but is ineffective unless the fat globule membrane is damaged or weakened. This may occur through agitation, and/or foaming, and pumping. For this reason, homogenized milk is subject to rapid lipolysis unless lipase is destroyed by heating first; the enzyme (protein) is denatured at 55-60° C. Therefore, always homogenize milk immediately before or after pasteurization and avoid mixing new and homogenized milk because it leads to rapid rancidity.

Some cows can produce spontaneous lipolysis from reacting to something indigenous to the milk. Late lactation, mastitis, hay and grain ratio diets (more so than fresh forage or silage), and low yielding cows are more susceptible.

Lipolysis can be detected by measuring the acid degree value which determines the presence of free fatty acids. Lipolytic or hydrolytic rancidity is distinct from oxidative rancidity, but frequently in other fat industries, rancid is used to mean oxidative rancidity; in dairy, rancidity means lipolysis.

Characterized: soapy, blue-cheese like aroma, slightly bitter, foul, pronounced aftertaste, does not clear up readily


Milk fat oxidation is catalysed by copper and certain other metals with oxygen and air. This leads to an autooxidation reaction consisting of initiation, propagation, termination.

RH --- R + H initiation - free radical

R + O2 ---- RO2 propagation

RO2 + RH --- ROOH + R

R + R --- R2 termination

R + RO2 --- RO2R

It is usually initiated in the phospholipid of the fat globule membrane. Propagation then occurs in triglycerides, primarily double bonds of unsaturated fatty acids. During propagation, peroxide derivatives of fatty acids accumulate. These undergo further reactions to form carbonyls, of which some, like aldehydes and ketones, have strong flavours. Dry feed, late lactation, added copper or other metals, lack of vit E (tocopherol) or selenium (natural antioxidates) in the diet all lead to spontaneous oxidation. It can be a real problem especially in winter. Exposure to metals during processing can also contribute.

Characterized: metallic, wet cardboard, oily, tallowy, chalky; mouth usually perceives a puckery or astringent feel


Often confused with oxidized, this defect is caused by UV-rays from sunlight or fluorescent lighting catalyzing oxidation in unprotected milk. Photo-oxidation activates riboflavin which is responsible for catalyzing the conversion of methionine to methanal. It is, therefore, a protein reaction rather than a lipid reaction. However, the end product flavour notes are similar but tends to diminish after storage of several days.

Characterized: burnt-protein or burnt-feathers-like, "medicinal"-like flavour


This defect is a function of the time-temperature of heating and especially the presence of any "burn-on" action of heat on certain proteins, particularly whey proteins. Whey proteins are a source of sulfide bonds which form sulfhydryl groups that contribute to the flavour. The defect is most obvious immediately after heating but dissipates within 1 or 2 days.

Characterized: slightly cooked or nutty-like to scorched or caramelized

Transmitted flavours

Cows are particularly bad for transmitting flavours through milk and milk is equally as susceptible to pick-up of off flavours in storage. Feed flavours and green grass can be problems so it is necessary to remove cows from feed 2-4 hrs before milking. Weeds, garlic/onion, and dandelions can tranfer flavours to the milk and even subsequent products such as butter. Barny flavours can be picked up in the milk if there is poor ventilation and the barn is not properly cleared and cows breathe the air. These flavours are volatile so can be driven off through vacuum de-aeration.

Characterization: hay/silage, cowy/barny


There are many flavour defects of dairy products that may be caused by bacteria, yeasts, or moulds. In raw milk the high acid/sour flavour is caused by the growth of lactic acid bacteria which ferment lactose. It is less common today due to change in raw milk microflora. In both raw or processed milk,  fruity  flavours may arise due to psychrotrophs such as Pseudomonas fragi. Bitter or putrid flavours are caused by psychrotrophic bacteria which produce protease. It is the proteolytic action of protease that usually causes spoilage in milk. Malty flavours are caused by S.lactis var. maltigenes and is characterized by a corn flakes type flavour. Although more of a tactile defect, ropy milk is also caused by bacteria, specifically those which produce exopolysaccharides. 

Miscellaneous Defects

  • astringent
  • chalky
  • chemical/medicinal - disease - associated or adulteration
  • flat - adulteration (water)
  • foreign
  • salty - disease associated
  • bitter - adulteration

More information on off-flavours in milk can be found in Clarke et al. 

Milk flavour is graded on a score of one to 10. Some flavour defects, even if only slightly present, can decrease the score drastically. The following are suggested flavour scores for milk with designated intensities of flavour defects. 


Flavour Criticisms



Intensity of Defect




Astringent 8 7 5
Barny 7 5 3
Bitter 7 5 3
Cooked 9 8 6
Cowy 6 4 1
Feed 9 7 5
Flat 9 8 7
Foreign 5 3 0
Garlic/onion 5 3 1
High acid 3 1 0
Bacterial 5 3 0
Lacks Freshness 7 5 3
Malty 7 5 3
Oxidized 7 5 3
Rancid 7 5 3
Salty 8 6 4
Unclean 7 5 3