Dr. E. Jane Robb

E. Jane Robb
Professor Emerita
Department of Molecular and Cellular Biology
Email: 
jrobb@uoguelph.ca
Phone number: 
52529
Office: 
SSC 3250

Education

  • B.Sc. York University
  • Ph.D British Columbia

Research

Research in my laboratory focuses on understanding the cell and molecular biology of resistance and pathogenesis to fungal caused vascular wilt diseases of plants. In particular, we are studying diseases caused by fungi of the genus Verticillium, which infect over 400 different crop plants worldwide and account for major crop loss in most countries. In Canada, substantial losses in potatoes, tomatoes, alfalfa and strawberries occur each year. We are using biotechnology to develop plant pathogen diagnostics and to genetically engineer more wilt-resistant cultivars by manipulating the expression of plant genes involved in host (eg. phenylalanine ammonia lyase, PAL) or resistance (eg. Verticillium-resistance, Ve).

Selected Publications

(Bolded Names are Graduate Students)

  • E.J. Robb and R.N. Nazar. 2021. Tomato Ve-resistance locus: resilience in the face of adversity? Planta 254: 126-136. doi: 10.1007/s00425-021-03783-1.
  • R.N. Nazar, X. Xu, T.W. Kim, S.W. Lee and J. Robb. 2020. The Ve-resistance locus, a plant signaling intercept. Planta. 252: 7-11. doi: 10.1007/s00425-020-03412-3.
  • R.N. Nazar and J. Robb. 2019. Signaling crosstalk in the Ve-resistance locus of tomato. Atlas of Science, Research, April 24 (atlasofscience.org).
  • R.N. Nazar, C.D.M. Castroverde, X.Xu, A. Kurosky and J. Robb. 2019. Wounding induces tomato Ve1 R-gene expression. Planta 248: 1-19 (doi.org/10.1007/s00425-019-03121-6).
  • C.D.M. Castroverde, L.G. Morais de Avila, V.A. Romero, J. Blaya-Fernandez, R.N. Nazar and J. Robb. 2019 Differential repression of the Ve R-genes in tomato, Plant Gene, https://doi.org/10.1016/ j.plgene.2019.100174
  • M. Mackey, A. Kurosky, J. Robb and R.N. Nazar. 2018 A Graft Mimic Strategy for Verticillium Resistance in Tomato. Molecular Biotechnology (doi.org/10.1007/s12033-018-0101-8).
  • R.N. Nazar, X.Xu, A. Kurosky and J. Robb. 2018. Antagonistic function of the Ve R-genes in tomato. Plant Molecular Biology 98: 67-79.
  • R.N.Nazar, X. Xu, J. Blaya Fernandez, H. Shittu, A. Kurosky and J. Robb. 2018. Defence cascade in Verticillium-infected grafted tomato. Plant Signaling & Behaviour: e1475807 (doi.org/10.1080/15592324.2018.1475807).
  • R.N.Nazar, X. Xu, H. Shittu, A. Kurosky and J. Robb. 2018. Tomato Ve resistance locus; defense or growth. Planta 247: 1339-1350.
  • C.D.M. Castroverde, X. Xu, J. Blaya-Fernandez, R.N. Nazar and J. Robb. 2017. Epistatic influence in tomato Ve1-mediated resistance. Plant Biology 1: 843-847.
  • C.D.M. Castroverde, X. Xu, R.N. Nazar and J. Robb. 2017. Biotic factors that induce the tomato Ve1 R-gene. Plant Sience 265: 61-69.
  • X. Xu, J. Robb and R.N. Nazar. 2017. A “whole pot” strategy for root growth quantification or microbiota root interaction studies. Soil Biology & Biochemistry 111:154-156.
  •  C.D. M. Castroverde, R.N. Nazar and J. Robb. 2016. Verticillium Ave1 effector induces tomato defense gene expression independent of Ve1 protein. Plant Signaling & Behaviour 11: e1245254 (.doi.org/10.1080/15592324.2016.1245254).
  • J. Robb, H. Shittu, K.V. Soman, A. Kurosky, and R.N. Nazar. 2012. Arsenal of elevated defense proteins fails to protect tomato against Verticillium dahliae. Planta 236: 623-633.
  • C.D.M. Castroverde, R.N. Nazar and J. Robb.2010. Defence genes in tomato. In: Tomatoes: Agricultural Practices, Pathogen Interactions and Health Effects. Ed. E.D. Aube and F.M. Poole. Nova Science Publishers, Hauppauge, pp. 1-40.
  • C.D.M. Castroverde, R.N. Nazar and J. Robb. 2010. Defense Genes in Tomato. Nova Science Publishers, Inc. New York City, NY, USA.
  • R.N. Nazar, P. Chen, D. Dean and J. Robb. 2010. DNA chip analysis in diverse organisms with unsequenced genomes. Molecular Biotechnology  44: 8-13.
  • J. Robb, J., C.D.M. Castroverde, H.O. Shittu and R.N. Nazar. 2009.  Patterns of Defence Gene Expression in the Tomato-Verticillium Interaction. Botany  87: 993-1006.
  • E. Fradin, Z. Zhang, J.C. Juarez Ayala, C.D.M. Castroverde, R.N. Nazar, J. Robb, C-M. Liu and B.P.H.J. Thomma. 2009. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 150: 320-332.
  •  H.O. Shittu, A.S. Shakir, R.N. Nazar and J. Robb. 2009. Endophyte-induced Verticillium protection in tomato is range-restricted. Plant Signaling & Behavior  4: 160-161.
  • H.O. Shittu, C.D.M. Castroverde, R.N. Nazar and J. Robb. 2008. Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta. 229: 415-426.
  • Chang A, Lim MH, Lee SW, Robb J, Nazar RN. 2008. Tomato pal gene family: Highly redundant but strongly underutilized. J. Biol. Chem. 283: 33591-33601.
  • H.O. Shittu, C.D.M. Castroverde, R.N. Nazar and J. Robb. 2008. Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta., first online.
  • Robb J., B. Lee and R.N. Nazar. 2007. Gene suppression in a tolerant tomato-vascular pathogen interaction. Planta. 226: 299‚Äì309.
  • R.N. Nazar and J. Robb. Borrowing from biology. 2007. Science. 318: 565.
  • Yi JY, Seo HW, Yang MS, Robb EJ, Nazar RN, Lee SW. 2004. Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato. Planta. 220: 165-71.
  • Chen, P., B. Lee and J. Robb. 2004. Tolerance to a non-host isolate of Verticillium dahliae in tomato. Physiol Mol. Plant Pathol. 64: 283-291.