Skip to main content
Skip to main content
  • About the Office of Research
  • Welcome Message
  • Meet the Vice-President (Research)
  • Strategic Research Plan
  • Mission Statement
  • Services and Divisions
  • Discover our Research
  • Research Chairs
  • Facts and Figures
  • Centres, Institutes, and Groups
  • International Research
  • Find a Researcher
  • Core Research Facilities
  • For Researchers
  • Safeguarding Research
  • Commercialization Policy and Framework
  • Equity, Diversity, and Inclusion in Research
  • Research Alerts
  • Funding
  • Ethics and Regulatory Compliance
  • Research Integrity and Conflict of Interest
  • Patenting, Licensing, and Commercialization
  • Honours and Awards
  • Ontario Agri-Food Innovation Alliance
  • Other Considerations and Resources
  • Forms, Policies, Guidelines, and Procedures
  • Interactive Support Sessions for Researchers
  • Researcher Training and Development
  • Research Administration Information Management System (RAIMS)
  • For Students
  • Academic Programs
  • Research Opportunities
  • Student Entrepreneurs
  • For Partners
  • Opportunities for Collaboration
  • Patenting, Licensing, and Commercialization
  • Find a Researcher
  • Research Services
  • Contact Us
  • Office of the Vice-President (Research & Innovation)
  • Research Services Office
  • Agri-Food Partnership staff
  • Research Innovation Office staff
  • Food from Thought staff
  • College Associate Deans Research and Research Managers
  • Research Financial Services

Gaining Virtual Insights into the Molecular Structure of the Brain

Posted on Tuesday, June 26th, 2018
George Harauz stands beside equipment in his lab.

Prof. George Harauz in his lab.  Photo: Sydney Pearce

 

By Sandra Clark

Using an advanced computing network to visualize interactions between two key proteins has brought researchers in the Department of Molecular and Cellular Biology one step closer to understanding the molecular structure of the white matter of the brain – findings that could also lead to important insights regarding the onset of multiple sclerosis (MS).

A team led by Prof. George Harauz used the Shared Hierarchical Academic Research Computing Network (SHARCNET) facility at the University of Guelph to better understand how myelin – that is, the protective coating of the central nervous system that breaks down in MS – develops. The advanced molecular modelling techniques enabled by SHARCNET allowed the team to visualize the interaction between two proteins: myelin binding protein (MBP) and Fyn-SH3, each essential to the health of myelin. 

“Our work has been driven by the desire to understand better at the molecular level how myelin is assembled in the healthy brain and how it degenerates in the MS brain,” says Harauz. 

MS ultimately involves an autoimmune attack where myelin is depleted and can’t fully repair itself. Because myelin upholds the body’s communication system by enabling nerves to transmit properly, its breakdown leads to MS symptoms such as pain, numbness, and loss of coordination. Harauz’s team believes it is crucial to first understand how myelin develops, in order to then begin to understand why it can’t regenerate itself fully in MS.

Former University of Guelph research associates Dr. Kyrylo Bessonov and Dr. Kenrick Vassal led the modeling efforts, spending almost four years delving into the complex molecular world of myelin formation.   

The team had previously carried out cell-based research that showed the central region of MBP is the target of phosphorylation – a process that modifies the protein’s structure and interactions with other cellular components. Knowing that phosphorylation would change MBP’s interaction with Fyn-SH3, they investigated whether improper signalling between these proteins is the reason why remyelination ultimately fails in the MS brain.

The virtual modelling program available on SHARCNET allowed them to develop a protein model to visualize, in 3D, how phosphorylation can change the interactions between MBP and Fyn-SH3.

The importance of using molecular modelling becomes clear: while experimental data that comes from cellular and biochemical research is essential to understanding these interactions, it can be costly and time-consuming, and in general is only indirectly able to contribute to visualizing these interactions. Publicly available computing infrastructure such as SHARCNET allows researchers all over Canada, including the Harauz lab, to run longer simulations while focusing on specific questions.

“This is one step towards modelling more complex systems that reflect more closely the true composition of brain myelin, which would be really exciting,” says Harauz.

Harauz and his team hope the study can guide efforts to model these interactions further in an increasingly complex environment more closely matched to that of the human brain, and to better understand the implications for diseases such as MS.

The study was funded by the Natural Sciences and Engineering Research Council of Canada.

Read the full article in the journal Proteins.

Printer-friendly version
Skip to main content

Who We Are

The Office of Research oversees a $186 million research enterprise across seven colleges, our regional campus at Ridgetown, 15 research centres, and the University of Guelph/Ontario Ministry of Agriculture, Food and Rural Affairs Agreement. We are committed to supporting the research programs of University of Guelph faculty across all disciplines.

more...

Quick Links

  • OR-5 form
  • Animal Utilization Protocol online system (eAUP)
  • Human Participants - Ethics Online System (EthOS)
  • Funding Opportunities list

Find Us on Social Media


  • X - Twitter

  • YouTube - YouTube

  • Facebook - Facebook

  • Instagram