Announcement:

All interested members of the university community are invited to attend the Final Oral Examination for the degree of Doctor of Philosophy of TRISTEN HEWITT on Wednesday, September 7, 2022 at 1:30 p.m. (SSC 2315)

Thesis Title: The role of store-operated calcium entry in transcription factor activation and in accelerated differentiation of induced pluripotent stem cell-neural progenitor cells derived from bipolar disorder patients

Examination Committee:
Dr. Matthew Kimber, Dept. of Molecular and Cellular Biology (Exam Chair)
Dr. Jasmin Lalonde, Dept. of Molecular and Cellular Biology
Dr. Melissa Perreault, Dept. of Biomedical Science
Dr. Shaun Sanders, Dept. of Molecular and Cellular Biology
Dr. Jean Martin Beaulieu, Dept. of Pharmacology and Toxicology, University of Toronto (External Examiner)

Advisory Committee:
Dr. Jasmin Lalonde (Advisor)
Dr. Melissa Perreault
Dr. Neil MacLusky

Abstract: Calcium (Ca^{2+}) is a pivotal signaling molecule in non-excitable and excitable cells. In neurons, it regulates processes from transcription to excitability. Though they have specialized Ca^{2+} channels that influx massive amounts of this cation during activity, these channels are closed during rest. So, to regulate smaller oscillations, neurons use store-operated Ca^{2+} entry (SOCE). This mechanism utilizes the ER Ca^{2+} sensor STIM and the Ca^{2+} channel ORAI for influx after Ca^{2+} stores in the ER are depleted. This influx is known to regulate transcription, differentiation, survivability, and excitability, among other processes. Since the various roles SOCE contributes to are cell type-specific, we wanted to assess its impact on transcription and differentiation with a model seldom used for SOCE-specific research: human-derived neural progenitor cells (NPCs). SOCE is known to modulate activity of transcription factors such as NFAT and Sp4. We sought to test whether CREB, a crucial transcription factor in neurogenesis, could be modulated by SOCE. We found that CREB was phosphorylated as soon as five minutes after SOCE activation, though not by one of its canonical pathways. We also found that SOCE activation contributed broadly to transcription as its activation upregulated several immediate early genes. If SOCE indeed influences neurogenesis in this way, dysregulation in the brain could contribute to neurodevelopmental disease. Though Ca^{2+} signaling is known to be dysregulated in bipolar disorder (BD), few studies have explored potential SOCE dysregulation in cells derived from these patients. We uncovered an attenuation in SOCE-specific Ca^{2+} influx in BD-derived NPCs (BD-NPCs) that was dependent on differentiation. Form this we explored neurodevelopmental deficits in these cells, which
included a unique transcriptome, upregulated microRNAs, reduced rate of proliferation, increased migration, longer neurite outgrowth, and abnormal subventricular structures after generating BD organoids. This all suggests that BD pathophysiology may begin long before symptoms of the disease present in early adulthood. Continuing to study the impact SOCE has on NPCs and how dysregulated neurodevelopmental processes in BD-NPCs contribute to disease could uncover new cell signaling pathways and potential therapeutics for the disease.

Curriculum Vitae: Tristen completed his Bachelor of Science (Hons.) in Molecular Biology and Genetics with a minor in Zoology at the University of Guelph in April 2018. He then started his Master of Science in Molecular and Cellular Biology with a specialization in Neuroscience under the supervision of Dr. Jasmin Lalonde at the University of Guelph in May 2018. He transferred to the Doctor of Philosophy program in September 2019.

Smith B, Hewitt T, Bakovic M, Lu R. ER stress-associated transcription factor CREB3 is essential for normal ROS, Ca2+, and ATP homeostasis. (Submitted to Mitochondrion).

Hewitt T, Proud E, Brind’Amour J, Sheridan SD, Perlis RH, Lalonde J. Store-operated Ca2+ entry phosphorylates CREB at S133 and upregulates immediate early genes responsible for neurodevelopment. (In preparation for submission to Experimental Brain Research).