Colorectal cancer is a prevalent global malignancy with more than 1 million cases diagnosed every year; more concerning, the age of onset is decreasing. Oncomicrobes, including *Fusobacterium nucleatum*, are microbes linked to the initiation/development of colorectal tumors. Eliminating oncomicrobes from the colon may reduce the likelihood of developing colorectal cancer or slow the disease progression. Targeting *Fusobacterium nucleatum* with antibiotics risks damaging the human gut microbiome and developing antibiotic resistance. Instead, a biological antimicrobial agent can be explored; *Bdellovibrio*-and-like organisms. *Bdellovibrio*-and-like organisms are aerobic, predatory deltaproteobacteria that kill Gram-negative bacteria as a part of their lifecycle. We hypothesize that *Bdellovibrio*-and-like organisms can effectively prey upon *Fusobacterium nucleatum*, and may be considered for therapeutic use in the treatment of colorectal cancer. We will investigate how *Bdellovibrio*-and-like organisms, including *Bdellovibrio bacteriovorus* HD100, the type strain, are able to remove oncomicrobes from a variety of mixed bacterial communities that are representative of the human colon, restoring the colonic microbiome to a normally functioning state. Our main objectives are to 1) isolate *Bdellovibrio*-and-like organisms from the environment, 2) compare the predatory effectiveness of *Bdellovibrio*-and-like organisms isolates under different testing conditions, and 3) evaluate the predatory effectiveness of *Bdellovibrio*-and-like organisms within a colorectal cancer colonic microbiome community using a bioreactor model. Using *Bdellovibrio*-and-like organisms as a bacterial therapy against cancer-promoting oncomicrobes would be novel and could be promising for colorectal cancer research alongside current or other novel treatment methods to better patient outcomes.